Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (8): 7-12    DOI: 10.11868/j.issn.1001-4381.2015.08.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
异步轧制AZ31镁合金板材的超塑性工艺及变形机制
江海涛, 段晓鸽, 蔡正旭, 王丹
北京科技大学 冶金工程研究院, 北京 100083
Superplastic Process and Deformation Mechanism of Asymmetrically Rolled AZ31 Magnesium Alloy
JIANG Hai-tao, DUAN Xiao-ge, CAI Zheng-xu, WANG Dan
Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3521 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 经过异步轧制工艺获得AZ31镁合金薄板。在300~450℃范围内,分别通过5×10-3,1×10-3s-1和5×10-4s-1不同应变速率进行高温拉伸实验研究其超塑性变形行为,计算应变速率敏感指数m值、超塑性变形激活能Q及门槛应力σ0值。通过EBSD分析和扫描电镜观察拉伸断裂后的断口形貌,分析AZ31镁合金的超塑性变形机制。结果表明:AZ31镁合金的塑性变形能力随着变形温度的升高及应变速率的降低而增强。当拉伸温度为400℃、m=0.72、应变速率为5×10-4s-1时,AZ31具有良好的超塑性,伸长率最大为206%。温度为400℃时,异步轧制AZ31镁合金的超塑性变形是以晶格扩散控制的晶界滑移和基面滑移共同完成的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江海涛
段晓鸽
蔡正旭
王丹
关键词 AZ31镁合金晶粒细化超塑性工艺变形机制    
Abstract:AZ31 magnesium alloy sheet was prepared by asynchronous rolling process. From 300℃ to 450℃, tensile test was conducted with different strain rates of 5×10-3, 1×10-3s-1 and 5×10-4s-1 respectively to investigate the superplastic deformation behavior of AZ31 magnesium alloy. The value of the strain rate sensitive index m, the superplastic deformation activation energy Q and the threshold stress σwere also calculated. The superplastic deformation mechanism of AZ31 was investigated through observation of the fracture morphology of the tensile specimens by EBSD and SEM.The results show that the plastic deformation capacity of AZ31 magnesium alloy enhances with increasing deformation temperature and decreasing strain rate. AZ31 magnesium alloy exhibits good superplasticity, and maximum elongation-to-failure of 206% at 400℃ when the strain rate is 5×10-4s-1, and the m value is 0.72. Furthermore, the superplastic deformation of the asynchronous rolled AZ31 magnesium alloy at 400℃ relies on the joint effects of grain boundary sliding (GBS) controlled by lattice diffusion and basal slip.0
Key wordsAZ31 magnesium alloy    grain refinement    superplastic process    deformation mechanism
收稿日期: 2013-09-17      出版日期: 2015-08-17
1:  TG146.2  
通讯作者: 江海涛(1976-),男,副教授,从事有色金属加工、汽车用钢方面的研究工作,联系地址:北京科技大学冶金工程研究院(100083),E-mail:nwpujht@163.com     E-mail: nwpujht@163.com
引用本文:   
江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
JIANG Hai-tao, DUAN Xiao-ge, CAI Zheng-xu, WANG Dan. Superplastic Process and Deformation Mechanism of Asymmetrically Rolled AZ31 Magnesium Alloy. Journal of Materials Engineering, 2015, 43(8): 7-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.08.002      或      http://jme.biam.ac.cn/CN/Y2015/V43/I8/7
[1] MORDIKE B L, EBERT T. Magnesium properties-applications-potential[J]. Materials Science and Engineering:A,2001,302(1):37-45.
[2] LUO A A, MISHRA R K, POWELL B R, et al. Magnesium alloy development for automotive applications[J]. Materials Science Forum,2012,706(1):69-82.
[3] 刘旭贺. 超轻超塑性镁锂合金的制备及性能研究[D]. 哈尔滨:哈尔滨工程大学,2012. LIU Xu-he. Study on preparation and properties of superlight-superplastic Mg-Li alloy[D].Harbin:Harbin Engineering University,2012.
[4] WATANABE H. Mechanical properties and texture of superplastically deformed AZ31 magnesium alloy[J]. Materials Science and Engineering:A,2008,477(1-2):153-161.
[5] BLANDIN J J. Superplastic forming of magnesium alloys: production of microstructures, superplastic properties, cavitation behavior[J]. Superplasticity in Advanced Materials,2007,551-552:211-217.
[6] 陈维平, 杨冬雨, 詹美燕. 累积叠轧焊温度和循环道次对 AZ31 镁合金组织和性能的影响[J]. 特种铸造及有色合金,2008,28(5):338-341.CHEN Wei-ping, YANG Dong-yu, ZHAN Mei-yan. Effects of rolling temperature and cycle numbers on the microstructure and properties of AZ31 magnesium sheet during accumulative rolling-bonding[J]. Special Casting & Nonferrous Alloys,2008,28(5):338-341.
[7] FIGUEIREDO R B, LANGDON T G. Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP[J]. Journal of Materials Science,2010,45(17):4827-4836.
[8] 徐淑波, 秦振, 刘婷, 等. 剧烈塑性变形对AZ31镁合金显微组织和力学性能的影响[J]. 中国有色金属学报:英文版,2012,22(增刊1):61-67.XU Shu-bo, QIN Zhen, LIU Ting, et al. Effect of severe plastic deformation on microstructure and mechanical properties of bulk AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2012,22(Suppl 1):61-67.
[9] 张凯锋,尹德良,王国峰, 等. 热轧AZ31镁合金超塑性变形中的微观组织演变及断裂行为[J].航空材料学报,2005,25(1):5-10.ZHANG Kai-feng, YIN De-liang,WANG Guo-feng, et al. Microstructure evolution and fracture behavior in superplastic deformation of hot-rolled AZ31 Mg alloy[J]. Journal of Aeronautical Materials,2005,25(1):5-10.
[10] 张诗昌,田甜,韦中新, 等. AZ31镁合金超塑性及其变形机制图[J]. 特种铸造及有色合金,2009,29(8):695-697. ZHANG Shi-chang, TIAN Tian, WEI Zhong-xin, et al. Superplasticity and deformation mechanism map of AZ31 magnesium alloy[J]. Special Casting & Nonferrous Alloys,2009,29(8):695-697.
[11] HOSOKAWA H, IWASAKI H, MORI T. Effects of Si on deformation behavior and cavitation of coarse-grained Al-4.5Mg alloys exhibiting large elongation[J]. Acta Mater,1999,47(6):1859-1867.
[12] 王赛香, 张大童, 张文, 等. 热轧MB8镁合金的超塑性[J]. 材料热处理学报,2012,33(9):17-22. WANG Sai-xiang, ZHANG Da-tong, ZHANG Wen, et al. Superplasticity of hot rolled MB8 magnesium alloy[J]. Transactions of Materials and Heat Treatment,2012,33(9):17-22.
[13] 陈晓霞,唐伟能,陈荣石.粗晶 Mg-3Gd-1Zn 合金高温压缩变形过程中的动态再结晶[J].稀有金属,2012,36(1):6-12. CHEN Xiao-xia, TANG Wei-neng, CHEN Rong-shi. Dynamic recrystallization of coarse-grained Mg-3Gd-1Zn alloy during hot-compression[J].Chinese Journal of Rare Metals,2012,36(1):6-12.
[14] MOHANMED F A. On the origin of super plastic flow at very low stress[J]. Materials Science and Engineering:A,2005,410-411:89-94.
[15] 陈浦泉.组织超塑性[M]. 哈尔滨:哈尔滨工业大学出版社,1988. CHEN Pu-quan. Structural Superplasticity[M]. Harbin:Harbin Institute of Technology Press,1988.
[16] 罗晋如,GODFREY A,刘伟,等. 初始织构对高温轧制AZ31镁合金板显微组织与织构影响的EBSD研究[J]. 电子显微学报,2011,30(4-5):299-302. LUO Jin-ru, GODFREY A, LIU Wei, et al. Study of effects of initial texture on the microstructure and texture for hot rolled AZ31 Mg alloy sheet using EBSD[J]. Journal of Chinese Electron Microscopy Society,2011,30(4-5):299-302.
[17] KELLEY E W, HOSFORD W F. Plane-strain compression of magnesium and magnesium alloy crystals[J]. Trans Met Soc AIME,1968,242(1):5-13.
[18] 孟利,杨平,解延雷,等. 低应变速率下AZ31镁合金热形变过程的取向成像分析[J]. 中国体视学与图像分析,2004,9(3):129-133. MENG Li, YANG Ping, JIE Yan-lei, et al. An oim analysis on the deformation mechanism in hot compressed AZ31 magnesium alloy[J]. Chinese Journal of Stereology and Image Analysis, 2004,9(3):129-133.
[1] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[2] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
[3] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[4] 李晓闲, 孙新军, 杨庚蔚, 李昭东, 虞澜, 雍岐龙. 低碳钒微合金钢的淬透性研究[J]. 材料工程, 2014, 0(4): 58-62.
[5] 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程, 2013, 0(9): 54-59.
[6] 王鸿鼎, 喇培清, 师婷, 魏玉鹏, 卢学峰. 块体纳米晶/微米晶复相金属材料研究现状及其发展趋势[J]. 材料工程, 2013, 0(4): 92-96.
[7] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
[8] 邓娟利, 赵晓莉, 周传哲, 黎德育, 李宁. AZ31镁合金表面浸锌过程中混合电势与覆盖度关系研究[J]. 材料工程, 2012, 0(9): 19-22,27.
[9] 胡耀波, 赵冲, 吴福洲, 李亚妮. Mg-Zn-xCu-Ce镁合金铸态组织与力学性能[J]. 材料工程, 2012, 0(5): 1-5.
[10] 刘君, 郭学锋, 张忠明, 叶永南. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程, 2012, 0(5): 70-75.
[11] 薛文斌, 陈廷芳, 李永良, 邹志锋, 刘晓龙, 赵衍华. AZ31镁合金搅拌摩擦焊接头微弧氧化表面防护研究[J]. 材料工程, 2012, 0(12): 1-6.
[12] 田素贵, 李振荣, 赵忠刚, 陈礼清, 刘相华. 冷却方式对热连轧GH4169合金组织与蠕变行为的影响[J]. 材料工程, 2012, 0(10): 1-7.
[13] 韩栋, 杜军, 李文芳. 碳和碱土元素复合细化对Mg-3Al合金抗拉强度的影响[J]. 材料工程, 2011, 0(5): 21-25.
[14] 刘劲松, 王祺, 肖寒, 张士宏. AZ31镁合金型材温热弯曲实验研究[J]. 材料工程, 2011, 0(3): 20-23.
[15] 彭建, 周绸, 陶健全, 潘复生. AZ31与AZ61异种镁合金的TIG焊研究[J]. 材料工程, 2011, 0(2): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn