Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (8): 31-36    DOI: 10.11868/j.issn.1001-4381.2015.08.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征
余煜玺1,2, 吴晓云1, 伞海生2
1. 厦门大学 材料学院 材料科学与工程系 福建省特种 先进材料重点实验室, 福建 厦门 361005;
2. 厦门大学 萨本栋微米纳米技术研究院, 福建 厦门 361005
Preparation and Characterization of Hydrophobic SiO2-glass Fibers Aerogels via Ambient Pressure Drying
YU Yu-xi1,2, WU Xiao-yun1, SAN Hai-sheng2
1. Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian, China;
2. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, Fujian, China
全文: PDF(1942 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为复合硅源,玻璃纤维为增强体,采用溶胶-凝胶和常压干燥工艺制备出疏水性SiO2-玻璃纤维复合气凝胶。利用N2吸附脱附、扫描电镜、 高分辨透射电镜、红外光谱、接触角、热重-差热分析及力学测试等手段表征复合气凝胶,并分析预处理玻璃纤维时的盐酸浓度及浸泡时间对复合气凝胶密度的影响。结果表明:当玻璃纤维的预处理条件为2.5mol/L盐酸浸泡0.5h时,制备得到的SiO2-玻璃纤维复合气凝胶表观密度最低,为0.12g/cm3,孔径主要分布在2~50nm,疏水角为142°,热稳定性温度高达500℃,抗压强度为0.05MPa,弹性模量为0.5MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余煜玺
吴晓云
伞海生
关键词 SiO2气凝胶玻璃纤维常压干燥    
Abstract:Hydrophobic SiO2-glass fibers aerogels were prepared by sol-gel process with tetraethoxysiliane (TEOS) and methyltriethoxysilane (MTES) as the silica source, glass fibers as reinforcement, followed by ambient pressure drying. The physical properties and microstructure of silica aerogels were characterized by nitrogen adsorption/desorption tests, Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis, scanning electron microscopy, high resolution transmission electron microscopy, contact angle measurement and mechanical testing. The influences of acid concentration and soaking time during pretreatment of glass fibers on the densities of SiO2-glass fibers aerogels were investigated. The results show that when the pretreatment condition of glass fibers is soaking 0.5h at 2.5mol/L hydrochloric acid, the obtained monolithic SiO2-glass fibers aerogels exhibit the lowest density of 0.12g·cm-3 and pore size is in the range of 2-50nm, the water contact angle is 142°, the thermal stability temperature reaches 500℃, the compressive strength is 0.05MPa, and the elastic modulus is 0.5MPa.
Key wordssilica aerogel    glass fiber    ambient pressure drying
收稿日期: 2014-03-27      出版日期: 2015-08-17
1:  O482.3  
通讯作者: 余煜玺(1974-),男,博士,教授,博士生导师,联系地址:福建省厦门市思明区思明南路422号厦门大学材料学院材料科学与工程系科学楼(361005),E-mail:yu_heart@xmu.edu.cn     E-mail: yu_heart@xmu.edu.cn
引用本文:   
余煜玺, 吴晓云, 伞海生. 常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征[J]. 材料工程, 2015, 43(8): 31-36.
YU Yu-xi, WU Xiao-yun, SAN Hai-sheng. Preparation and Characterization of Hydrophobic SiO2-glass Fibers Aerogels via Ambient Pressure Drying. Journal of Materials Engineering, 2015, 43(8): 31-36.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.08.006      或      http://jme.biam.ac.cn/CN/Y2015/V43/I8/31
[1] HUSING N, SCHUBERT U. Aerogels-airy materials: chemistry, structure, and properties[J]. Angewandte Chemie International Edition,1998,37(1-2):22-45.
[2] SOLEIMAN D A, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology,2008,199(1-3):10-26.
[3] FRICKE J, EMMERLING A. Aerogels-recent progress in production techniques and novel applications[J]. Journal of Sol-Gel Science and Technology,1998,13(1-3):299-303.
[4] PAJONK G M. Some applications of silica aerogels[J]. Colloid and Polymer Science,2003,281(7):637-651.
[5] SCHMIDT M, SCHWERTFEGER F. Applications for silica aerogel products[J]. Journal of Non-Crystalline Solids,1998,225:364-368.
[6] KIM C Y, LEE J K, KIM B I. Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,313:179-182.
[7] 高庆福, 冯坚, 张长瑞, 等. 陶瓷纤维增强氧化硅气凝胶隔热复合材料的力学性能[J]. 硅酸盐学报,2009,37(1):40-44.GAO Q F, FENG J, ZHANG C R, et al. Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites[J]. Journal of the Chinese Ceramic Society,2009,37(1):40-44.
[8] MONER G M, MARTINEZ E,ESTEVE J,et al. Micromechanical properties of carbon-silica aerogel composites[J]. Applied Physics A,2002,74(1):119-122.
[9] 张贺新, 赫晓东, 李垚. 碳纳米管掺杂 SiO2气凝胶隔热材料的制备与性能表征[J]. 稀有金属材料与工程,2007,36(增刊1):567-569. ZHANG H X, HE X D, LI Y. Synthesis and characterization of SiO2 thermal insulation aerogel doped CNTs[J]. Rare Metal Materials and Engineering,2007,36(Suppl 1):567-569.
[10] GUPTA N, RICCI W. Processing and compressive properties of aerogel/epoxy composites[J]. Journal of Materials Processing Technology,2008,198(1):178-182.
[11] KIM G S, HYUN S H. Effect of mixing on thermal and mechanical properties of aerogel-PVB composites[J]. Journal of Materials Science,2003,38(9):1961-1966.
[12] 杨海龙, 倪文, 孙陈诚, 等. 硅酸钙复合纳米孔超级绝热板材的研制[J]. 宇航材料工艺,2006,36(2):18-22. YANG H L, NI W, SUN C C, et al. Development of xonotlite-silica aerogel nanoporous super insulation sheets[J]. Aerospace Materials & Technology,2006,36(2):18-22.
[13] 冯坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J]. 国防科技大学学报,2010,32(1):40-44. FENG J, GAO Q F, FENG J Z, et al. Preparation and properties of fiber reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology,2010,32(1):40-44.
[14] 吕鹏鹏, 赵海雷, 刘欣, 等.常压干燥制备SiO2气凝胶的研究[J]. 材料工程,2012,(4):22-26. LU P P, ZHAO H L, LIU X, et al. Preparation of silica aerogel via ambient pressure drying[J]. Journal of Materials Engineering,2012,(4):22-26.
[15] RAO A V, KALESH R R. Organic surface modification of TEOS based silica aerogels synthesized by co-precursor and derivatization methods[J]. Journal of Sol-Gel Science and Technology,2004,30(3):141-147.
[16] YASUKI K,KAZUKI N,AKIRA M,et al. Synthesis of monolithic hierarchically porous iron-based xerogels from iron (III) salts via an epoxide-mediated sol-gel process[J]. Chemistry of Materials,2012,24(11):2071-2077.
[17] VENKATESWARA R A, KULKAMI M M, AMALNERKAR D P, et al. Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor[J]. Journal of Non-Crystalline Solids,2003,330(1):187-195.
[18] JEONG A Y, KOO S M, KIM D P. Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel[J]. Journal of Sol-Gel Science and Technology,2000,19(1-3):483-487.
[19] LEE C J, KIM G S, HYUN S H. Synthesis of silica aerogels from waterglass via new modified ambient drying[J]. Journal of Materials Science,2002,37(11):2237-2241.
[20] RAO A P, RAO A V, BANGI U K H. Low thermalconductive, transparent and hydrophobic ambient pressure dried silica aerogels with various preparation conditions using sodium silicate solutions[J]. Journal of Sol-Gel Science and Technology,2008,47(1):85-94.
[21] RAO A V, KALESH R R. Organic surface modification of TEOS based silica aerogels synthesized by co-precursor and derivatization methods[J]. Journal of Sol-Gel Science and Technology,2004,30(3):141-147.
[22] DENG Z S, WANG J, WU A M, et al. High strength SiO2 aerogel insulation[J]. J Non-Cryst Solids,1998,255:101-104.
[1] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[2] 李恩重, 徐滨士, 王海斗, 郭伟玲. 玻璃纤维增强聚醚醚酮复合材料在水润滑下的摩擦学性能[J]. 材料工程, 2014, 0(3): 77-82,89.
[3] 吕鹏鹏, 赵海雷, 刘欣, 李兴旺. 常压干燥制备SiO2气凝胶的研究[J]. 材料工程, 2012, 0(4): 22-26.
[4] 罗凤钻, 吴国友, 邵再东, 程璇, 余煜玺. 常压干燥制备疏水SiO2气凝胶的影响因素分析[J]. 材料工程, 2012, 0(3): 32-37.
[5] 郭明恩, 孙祖莉, 边文凤, 宋小然, 栾桂卿. 真空导入工艺参数对复合材料孔隙含量的影响[J]. 材料工程, 2012, 0(10): 54-57,62.
[6] 吴亚迪, 崔升, 韩桂芳, 沈晓冬. 疏水SiO2气凝胶的制备研究[J]. 材料工程, 2010, 0(6): 16-19,25.
[7] 宋艳江, 黄丽坚, 朱鹏, 王晓东, 黄培. 偶联剂处理玻璃纤维改性聚酰亚胺摩擦磨损性能研究[J]. 材料工程, 2009, 0(2): 58-62.
[8] 王海鹏, 陈新文, 李晓骏, 马丽婷, 苏彬. 玻璃纤维复合材料不同温度条件拉伸强度统计分布[J]. 材料工程, 2008, 0(7): 76-78.
[9] 马宏毅, 李小刚, 李宏运. 玻璃纤维-铝合金层板的拉伸和疲劳性能研究[J]. 材料工程, 2006, 0(7): 61-64.
[10] 梁辉, 徐庭献, 杨德安, 董向红. 玻璃纤维增强双马来酰亚胺树脂基复合材料表面金属化的研究[J]. 材料工程, 2001, 0(11): 17-20.
[11] 邓忠生, 魏建东, 王珏, 沈军, 周斌, 陈玲燕. SiO2气凝胶结构及其热学特性研究[J]. 材料工程, 1999, 0(12): 23-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn