Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (8): 50-55    DOI: 10.11868/j.issn.1001-4381.2015.08.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
冷轧对Al10Cu25Co20Fe20Ni25高熵合金组织结构及力学性能的影响
王重1, 林万明1, 马胜国2, 杨慧君1, 梁红玉3, 乔珺威1
1. 太原理工大学 材料科学与工程学院, 太原 030024;
2. 太原理工大学 应用力学与生物医学工程研究所, 太原 030024;
3. 太原工业学院 机械工程系, 太原 030008
Effect of Cold Rolling on Microstructures and Mechanical Properties of Al10Cu25Co20Fe20Ni25 High-entropy Alloys
WANG Zhong1, LIN Wan-ming1, MA Sheng-guo2, YANG Hui-jun1, LIANG Hong-yu3, QIAO Jun-wei1
1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2. Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
3. Department of Mechanical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
全文: PDF(1909 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对铸态Al10Cu25Co20Fe20Ni25高熵合金进行冷轧处理后进行室温拉伸测试,并利用X射线衍射仪(XRD)和扫描电镜(SEM)分别对其相结构、微观组织形貌及拉伸断口进行分析。结果表明:经冷轧工艺处理后,Al10Cu25Co20Fe20Ni25高熵合金硬度最大为285HV,较轧制前提高了51.6%;在变形量为40%时,抗拉强度达到最大值,为638MPa,是铸态合金的2.7倍。拉伸断口分析表明,铸态合金的断裂模式为树枝晶沿晶断裂和韧窝型延性断裂,而冷轧态合金主要为韧窝型延性断裂模式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王重
林万明
马胜国
杨慧君
梁红玉
乔珺威
关键词 高熵合金冷轧相结构抗拉强度微观结构    
Abstract:The tensile testing of as-cast Al10Cu25Co20Fe20Ni25 high-entropy alloys after cold rolling was conducted upon at room temperature. The phase structure, microstructural morphology, and tensile fracture were investigated by the combination of X-ray diffraction(XRD) and scanning electron microscope(SEM). The results reveal that by cold-rolling processing, the Al10Cu25Co20Fe20Ni25 high-entropy alloy hardness reaches the maximum up to 285HV, increases by 51.6% compared with the as-cast sample. Moreover, the tensile strength reaches the maximum up to 638MPa, when deformation amount is 40%, is 2.7 times of the as-cast alloy.Tensile fracture analysis shows that the fracture mode of as-cast alloy is dendrits intergranular fracture and ductile dimple fracture, and the cold-rolled alloys fracture mode is mainly ductile dimple fracture.
Key wordshigh-entropy alloy    cold-rolling    phase structure    tensile strength    microstructure
收稿日期: 2014-04-21      出版日期: 2015-08-17
1:  TG113.12  
通讯作者: 乔珺威(1982-),男,教授,博士,联系地址:山西省太原市迎泽西大街79号太原理工大学材料科学与工程学院(030024),E-mail:qiaojunwei@gmail.com     E-mail: qiaojunwei@gmail.com
引用本文:   
王重, 林万明, 马胜国, 杨慧君, 梁红玉, 乔珺威. 冷轧对Al10Cu25Co20Fe20Ni25高熵合金组织结构及力学性能的影响[J]. 材料工程, 2015, 43(8): 50-55.
WANG Zhong, LIN Wan-ming, MA Sheng-guo, YANG Hui-jun, LIANG Hong-yu, QIAO Jun-wei. Effect of Cold Rolling on Microstructures and Mechanical Properties of Al10Cu25Co20Fe20Ni25 High-entropy Alloys. Journal of Materials Engineering, 2015, 43(8): 50-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.08.009      或      http://jme.biam.ac.cn/CN/Y2015/V43/I8/50
[1] YEH J W, CHEN S K, GAN J Y, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metall Mater Trans,2004,35(8):2533-2536.
[2] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater Sci Eng,2003,375:213-218.
[3] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv Eng Mater,2004,6(5):299-303.
[4] ZHOU Y J, ZHANG Y, WANG Y L,et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J]. Appl Phys Lett,2007,90(18):181904-1-181904-3.
[5] CHOU H P, CHANG Y S, CHEN S K, et al, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys[J]. Mater Sci Eng,2009,163(3):184-189.
[6] GALI A, GEORGE E P. Tensile properties of high- and medium-entropy alloys[J]. Intermetallics,2013,39:74-78.
[7] TANG Z, HUANG L, HE W, et al. Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys[J]. Entropy,2014,16:895-911.
[8] WANG Y F, MA S G, CHEN X H, et al. Optimizing mechanical properties of AlCoCrFeNiTix high-entropy alloys by tailoring microstructures[J]. Acta Metall Sincia,2013,26(3):277-284.
[9] OTTO F, DLOUHY A, SOMSEN C, et al. The influences of temperature and microstructure on the tensile properties of a CoCr-FeMnNi high-entropy alloy[J]. Acta Mater,2013,61(15):5743-5755.
[10] KRENCKEL P, SARING P, FALKENBERG M A, et al. Interaction of iron with extended defects in multicrystalline silicon studied by local gettering[J]. Energy Procedia,2013,38:582-588.
[11] TILLMANN W, FENG X Q, FISCHER G, et al. Preliminary study for flaw detection in nodular cast iron by cyclic loading and thermography[J]. NDT & E Int,2013,56:28-37.
[12] SINGH S,WANDERK N,MURTY B S, et al. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy[J]. Acta Mater,2011,59(1):182-190.
[13] TSAI K Y, TSA M H, YEH J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Mater,2013,61(13):4887-4897.
[14] ZHAO H L, QIU F, JIN S B, et al. Compression properties and work-hardening effect of the NiAl-matrix composite with TaB2 and TaB[J]. Intermetallics,2012,27:1-5.
[15] HALLBERG H. Influence of process on grain refinement in AA1050 aluminum[J]. Int J Mech Sci,2013,66:260-272.
[16] 贾晨, 翟秋亚, 吕海峰, 等. 高塑性高熵合金的设计与制备[J].铸造技术,2010,31(9):1170-1172. JIA C, ZHAI Q Y, LV H F, et al. Design and preparation of higher ductile and high entropy alloy[J]. Foundry,2010,31(9):1170-1172.
[17] 王水华.多种工艺对CoCrFeNiCu高熵合金显微组织和力学性能的影响[D].北京:北京科技大学,2011. WANG S H. Effects of processing on the microstructural and mechanical properties of CoCrFeNiCu high entropy alloys[D].Beijing:Beijing University of Science and Technology,2011.
[18] 左演声,陈文哲,梁伟.材料现代分析方法[M].北京:北京工业大学出版社,2000.68-70. ZUO Y S, CHEN W Z, LIANG W. Modern Materials Analysis Methods[M].Beijing:Beijing University of Technology Press, 2000.68-70.
[19] HU Y, STENDER D, MEDARDE M, et al. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic Tb-MnO3 probed by X-ray diffractometry and micro-Raman spectroscopy[J]. Appl Surf Sci,2013,278:92-95.
[20] MISHRA A, KAD B K, GREGORI F. Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis[J]. Acta Mater,2007,55(1):13-28.
[21] CHEN M R, LIN S J, YEH J W, et al. Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0-2.0) high-entropy alloys[J]. Mater Trans,2006,47(5):1395-1401.
[22] SHENG H F, GONG M, PENG L M. Microstructural characterization and mechanical properties of an Al0.5CoCrFeNi high-entropy alloy in as-cast and heat-treated/quenched conditions[J]. Mater Sci Eng,2013,567:14-20.
[23] STRAUMAL B B, MAZILKIN A A, BARETZKY B, et al. Accelerated diffusion and phase transformations in Co-Cu alloys driven by the severe plastic deformation[J]. Mater Trans,2012,53(1):63-71.
[24] 徐恒钧. 材料科学基础[M].北京:北京工业大学出版社,2001.384-385. XU H J. Foundation of Material Science[M].Beijing:Beijing University of Technology Press,2001.384-385.
[25] GUO J H, ZHAO S D, MURAKAMI R I , et al. Experimental and numerical investigation for ductile fracture of Al-alloy 5052 using modified Rousselier model[J]. Comput Mater Sci,2013,71:115-123.
[1] 李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤. CNTs/Al5083复合材料力学性能及增强机制[J]. 材料工程, 2015, 43(8): 1-6.
[2] 岳远杰, 唐荻, 武会宾, 梁金明, 巨彪. Nb对高含Cl-强酸性溶液环境中低合金钢腐蚀性能的影响[J]. 材料工程, 2015, 43(6): 14-20.
[3] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[4] 王丙军, 王晓民, 喇培清. 烧结温度对20% ZrO2(3Y)/Al2O3复相陶瓷力学性能和微观结构的影响[J]. 材料工程, 2015, 43(10): 66-72.
[5] 闫世兴, 董世运, 徐滨士, 王玉江, 任维彬, 方金祥. 预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J]. 材料工程, 2015, 43(1): 30-36.
[6] 蒋明, 李子全, 刘劲松, 彭洁, 谢理明. Mo对A2B7型La-Mg-Ni贮氢电极合金相结构及电化学性能的影响[J]. 材料工程, 2014, 0(9): 100-105.
[7] 赵龙志, 焦宇. Al含量对Al-Fe-Si/Al原位复合材料的影响[J]. 材料工程, 2014, 0(4): 7-12.
[8] 孙冠华, 仇实, 郑经堂. 水热法制备聚苯乙烯/CdS核壳结构纳米复合颗粒[J]. 材料工程, 2014, 0(4): 89-94.
[9] 焦剑, 吴广力, 刘蓬, 蔡宇. MSU-J及有机化修饰对PMMA杂化材料力学性能和热性能的影响[J]. 材料工程, 2014, 0(2): 18-23.
[10] 王军, 刘莹, 丁红燕. 溅射法制备TiO2薄膜的耐腐蚀性[J]. 材料工程, 2014, 0(12): 34-38.
[11] 李斌, 陈招科, 熊翔. 梯度分布TaC界面改性C/C复合材料的微观结构与力学性能[J]. 材料工程, 2013, 0(9): 6-10.
[12] 王东, 赵军, 李安海, 崔晓斌. 基于微观结构的WC-Co硬质合金硬度预报模型[J]. 材料工程, 2013, 0(9): 22-26,31.
[13] 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程, 2013, 0(9): 54-59.
[14] 毛大恒, 赵苏琨, 李建平, 扶宗礼, 石琛. 冷轧变形量对电磁/超声铸轧铝板织构和性能的影响[J]. 材料工程, 2013, 0(6): 12-17.
[15] 游国强, 王向杰, 齐冬亮, 郭强, 龙思远. 线能量对挤压AZ91D镁合金GTAW焊接接头组织与性能的影响[J]. 材料工程, 2013, 0(10): 57-63,70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn