Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (8): 56-61    DOI: 10.11868/j.issn.1001-4381.2015.08.010
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究
左平1,2, 魏大盛1,2, 王延荣1,2
1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
2. 先进航空发动机协同创新中心, 北京 100191
Crack Closure Behavior and Crack Propagation Characteristic of FGH95 Powder Metallurgy Superalloy
ZUO Ping1,2, WEI Da-sheng1,2, WANG Yan-rong1,2
1. School of Energy and Powder Engineering, Beihang University, Beijing 100191, China;
2. Co-Innovation Center for Advanced Aero-Engine, Beijing 100191, China
全文: PDF(1875 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用有限元方法研究FGH95粉末高温合金标准紧凑拉伸(CT)试样的塑性诱发裂纹闭合效应,分析裂纹面上的应力分布,并考察本构模型,网格密度及应力比对裂纹闭合效应的影响,进而建立考虑裂纹闭合效应下CT试样裂纹扩展寿命分析模型,并进行寿命预测。结果表明:理想弹塑性模型下的裂纹闭合效应对网格单元的敏感性比多线性随动强化模型高;裂纹尖端塑性区内网格数达到20时,裂纹闭合趋于稳定;应力比增加裂纹闭合效应减小,当应力比达到0.5时裂纹闭合效应消失。修正的寿命预测模型对CT试样的预测精度比传统模型更高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左平
魏大盛
王延荣
关键词 粉末高温合金裂纹闭合裂纹扩展寿命预测塑性区    
Abstract:Plasticity-induced crack closure effect of compact tension (CT) specimen of FGH95 powder metallurgy superalloy was investigated by using finite element method. The stress distribution in crack surface was analyzed. The effects of three principal factors, the constitutive model, mesh density and stress ratio, on the crack closure behavior were studied, to further establish crack propagation life analysis model of CT specimens with considering crack closure, and to predict life. The results show that crack closure in elastic-perfectly plastic constitutive model appears more sensitive to grid cell than that in multi-linear kinematic hardening constitutive model. Crack closure trends to be stable with the number of crack tip elements in the plastic zone reach to 20. Crack closure decreases with the increase of stress ratio, and disappears as stress ratio reaches to 0.5. The revised life prediction model shows higher prediction accuracy than traditional model for CT specimens.
Key wordspowder metallurgy superalloy    crack closure    crack propagation    life prediction    plastic zone
收稿日期: 2014-07-03      出版日期: 2015-08-17
中图分类号:  V256  
通讯作者: 魏大盛(1978-),男,副教授,博士,主要从事航空发动机结构强度、振动及可靠性的研究,联系地址:北京航空航天大学新主楼D401(100191),E-mail:dasheng.w@163com     E-mail: dasheng.w@163com
引用本文:   
左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
ZUO Ping, WEI Da-sheng, WANG Yan-rong. Crack Closure Behavior and Crack Propagation Characteristic of FGH95 Powder Metallurgy Superalloy. Journal of Materials Engineering, 2015, 43(8): 56-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.08.010      或      http://jme.biam.ac.cn/CN/Y2015/V43/I8/56
[1] ELBER W. Fatigue crack closure under cyclic tension[J].Engineering Fracture Mechanics,1970,2(1):37-45.
[2] GONZALEZ-HERRERA A,ZAPATERO J. Influence of minimum element size to determine crack closure stress by the finite element method[J].Engineering Fracture Mechanics,2004,72(3):337-355.
[3] SOLANKI K, DANIEWICZS R, NEWMAN J C. Finite element analysis of plasticity-induced fatigue crack closure: an overview[J].Engineering Fracture Mechanics,2005,71(2):149-171.
[4] JIANG Yan-yao,FENG Miao-lin, DING Fei. A reexamination of plasticity-induced crack closure in fatigue crack propagation[J]. International Journal of Plasticity,2004,21(9):1720-1740.
[5] 陈勇,宋迎东,高德平. FGH95 粉末高温合金裂纹闭合数值模拟[J].材料科学与工程学报,2004,22(3):347-350.CHEN Yong, SONG Ying-dong, GAO De-ping.Numerical simulation of crack closure in FGH95 powder metallurgy superalloys[J]. Journal of Materials Science & Engineering,2004,22(3):347-350.
[6] HOU C Y. Three-dimensional finite element analysis of fatigue crack closure behavior in surface flaws[J]. International Journal of Fatigue,2004,26(11):1225-1239.
[7] NEWMAN J C, WU X R, ZHAO W, et al.Small crack growth and fatigue life prediction for high-strength aluminum alloys: part I-experimental and fracture mechanics analysis[J].Fatigue and Fracture of Engineering Materials and Structures,1998,21(11): 1289-1306.
[8] NEWMAN J C, WU X R, SWAIN M H, et al. Small crack growth and fatigue life prediction for high-strength aluminum alloys: part II-crack closure and fatigue analysis[J].Fatigue and Fracture of Engineering Materials and Structures,2000,23(1):59-72.
[9] SOLANKI K, DANIEWICZ S R, NEWMAN J C. A new methodology for computing crack opening values from finite element analyses[J].Engineering Fracture Mechanics,2003,71(7):1165-1175.
[10] 陈亚龙,杨晓光. 带保载平面应变塑性诱发裂纹闭合效应[J].航空动力学报,2010,25(9):2030-2035. CHEN Ya-long,YANG Xiao-guang. Plasticity-induced fatigue crack closure under plane strain condition with dwelling[J].Journal of Aerospace Power,2010,25(9):2030-2035.
[11] McCLUNG R C, SEHITOGLU H. On the finite element analysis of fatigue crack closure-1.basic modeling issues[J].Engineering Fracture Mechanics,1989,33(2):237-252.
[12] BLANDFORD R S,DANIEWICZ S R,SKINN ER J D. Determination of the opening load for a growing crack: evaluation of experimental data reduction techniques and analytical models[J]. Fatigue Fract Eng Mater Struct,2002,25(1):17-26.
[13] PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering Transaction of the ASME,1963,85:528-534.
[14] 魏大盛,王延荣.粉末冶金涡轮盘裂纹扩展特性分析[J].推进技术,2008,12(6):753-758. WEI Da-sheng,WANG Yan-rong. Lifing methodology of crack propagation in powder metallurgy turbine disk[J].Journal of Propulsion Technology,2008,12(6):753-758.
[1] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[2] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
[3] 侯琼, 陶宇, 贾建. 第四代粉末高温合金热变形后的“项链”组织[J]. 材料工程, 2019, 47(3): 94-100.
[4] 许良, 黄双君, 回丽, 王磊, 周松, 赵晴. TB6钛合金疲劳小裂纹扩展行为[J]. 材料工程, 2019, 47(11): 171-177.
[5] 赵景云, Bamber BLACKMAN, 颜悦, 张旋, 张晓雯. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程, 2018, 46(8): 156-162.
[6] 李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
[7] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[8] 许军, 李会芳, 程从前, 曹铁山, 赵杰. 基于应力松弛实验对服役25Cr35Ni型耐热钢的高温性能评估[J]. 材料工程, 2017, 45(8): 96-101.
[9] 申颜团, 彭金方, 徐志彪, 刘建华, 蔡振兵, 朱旻昊. 18CrNiMo7-6合金钢的弯曲微动疲劳特性[J]. 材料工程, 2017, 45(7): 103-110.
[10] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[11] 吉传波, 王晓峰, 邹金文, 杨杰. 石墨烯增强镍基粉末高温合金复合材料的力学性能[J]. 材料工程, 2017, 45(3): 1-6.
[12] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
[13] 李永德, 张莉莉, 张冲, 贺莹莹. SUJ2轴承钢超长寿命疲劳行为研究[J]. 材料工程, 2016, 44(8): 85-92.
[14] 江冯, 李萍, 程从前, 刘春慧, 赵杰. θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J]. 材料工程, 2015, 43(7): 87-92.
[15] 杨万鹏, 胡本芙, 刘国权, 吴凯. 高性能镍基粉末高温合金中γ'相形态致锯齿晶界形成机理研究[J]. 材料工程, 2015, 43(6): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn