Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (8): 62-71    DOI: 10.11868/j.issn.1001-4381.2015.08.011
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
基于有限元法和锁相热像法对含缺陷构件的应力分析与疲劳性能评估
樊俊铃1,2, 郭强1, 赵延广3, 郭杏林1,*()
1 大连理工大学 工业装备结构分析国家重点实验室, 辽宁 大连 116024
2 中国飞机强度研究所, 西安 710065
3 北京航空材料研究院, 北京 100095
Stress Analysis and Fatigue Behavior Assessment of Components with Defect Based on FEM and Lock-in Thermography
Jun-ling FAN1,2, Qiang GUO1, Yan-guang ZHAO3, Xing-lin GUO1,*()
1 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, Liaoning, China
2 Aircraft Strength Research Institute of China, Xi'an 710065, China
3 Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(5717 KB)   HTML ( 48 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于有限元法研究含盲孔缺陷构件的应力集中系数Kt随盲孔深度h和盲孔直径φ的变化规律。利用锁相热像法的热弹性分析模式(E-Mode)研究盲孔附近的应力分布,预测不同深度盲孔的Kt,与有限元结果相比较发现吻合良好。通过Altair Li软件中的耗散模式(D-Mode)和Altair软件分别研究构件在疲劳过程中的固有耗散量和温度信号的变化规律,以评估疲劳损伤的演化过程。以固有耗散和温度信号的变化规律作为疲劳损伤的指标,快速预测带盲孔试件的疲劳极限,进而预测试件的疲劳缺口系数Kf。理论计算的结果证明了锁相热像法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊俊铃
郭强
赵延广
郭杏林
关键词 锁相热像法应力集中热弹性应力分析固有耗散疲劳性能    
Abstract

The relationships between the stress concentration factor Kt with the depth h and diameter φ of the blind hole were investigated based on the FEM. The thermo-elastic analysis mode (E-Mode) built-in the lock-in thermography was utilized to study the stress distribution around the blind hole, and to predict the variation of Kt of different depth. Good predictions were achieved between the thermography and FEM. The variations of the intrinsic dissipation and the temperature signal during fatigue process were studied respectively using the dissipation mode (D-Mode) of Altair Li and Altair software, to evaluate fatigue damage evolution. These two signals were considered as fatigue damage markers to rapidly predict the fatigue limit and the fatigue notch factor Kf of the component with blind hole. The theoretical result validates the capability of the lock-in thermography.

Key wordslock-in thermography(LT)    stress concentration    thermo-elastic stress analysis(TSA)    intrinsic dissipation    fatigue behavior
收稿日期: 2013-12-03      出版日期: 2015-08-17
基金资助:国家自然科学基金资助项目(11072045)
通讯作者: 郭杏林     E-mail: xlguo@dlut.edu.cn
作者简介: 郭杏林(1955—),男,教授,博导,研究方向:工程力学、实验力学、计算力学,联系地址:辽宁省大连市大连理工大学工程力学系工业装备结构分析国家重点实验室(116024),E-mail:xlguo@dlut.edu.cn
引用本文:   
樊俊铃, 郭强, 赵延广, 郭杏林. 基于有限元法和锁相热像法对含缺陷构件的应力分析与疲劳性能评估[J]. 材料工程, 2015, 43(8): 62-71.
Jun-ling FAN, Qiang GUO, Yan-guang ZHAO, Xing-lin GUO. Stress Analysis and Fatigue Behavior Assessment of Components with Defect Based on FEM and Lock-in Thermography. Journal of Materials Engineering, 2015, 43(8): 62-71.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.08.011      或      http://jme.biam.ac.cn/CN/Y2015/V43/I8/62
ρ/(kg·m-3) E/MPa v C/(J·kg-1·K-1) α/10-5K-1 σb/MPa σy/MPa σf/MPa
7860 2.06×105 0.25 504 12.1 407 260 178
Table 1  Q235钢的物理力学性能[19]
Fig.1  试件尺寸
Fig.2  四分之一模型
Fig.3  随盲孔深度变化的应力场
(a)0.9mm;(b)1.8mm;(c)2.7mm(d)3.6mm;(e)4.5mm;(f)5.0mm
Fig.4  孔底至孔顶的Kt变化
Fig.5  盲孔深度
(a)、盲孔直径(b)与应力集中系数Kt的关系
Fig.6  不同应力幅下盲孔附近的应力分布
(a)σa=150MPa;(b)σa=170MPa;(c)σa=190MPa
Fig.7  190MPa下沿两条路径的应力分布
Fig.8  不同应力幅下的应力集中系数Kt
Fig.9  不同应力下的耗散场(1)和温度场(2)
(a)σa=150MPa;(b)σa=170MPa;(c)σa=190MPa
Fig.10  190MPa下的耗散分布
(a)热像图;(b)两条路径上的耗散值
Fig.11  190MPa下的温度分布
(a)热像图;(b)两条路径上的温度值
Fig.12  疲劳极限的预测 (1)固有耗散;(2)温升规律;
(a)h=0.9mm;(b)h=1.8mm;(c)h=2.7mm
h/mm FEM Kf TSA Kf LT Kf
0.9 1.4341 1.3091 1.1298
1.8 1.6115 1.4941 1.3323
2.7 1.6908 1.5888 1.4945
Table 2  有限元法、热弹性应力分析法及锁相热像法的Kf比较
1 PETERSON R E, PLUNKETT R Stress concentration factors[J]. Journal of Applied Mechanics, 1975, 42 (1): 248.
2 王喜丰. 基于红外热像技术的应力分析关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
2 WANG X F. The research on key technology of stress analysis based on infrared thermographic technology[D]. Harbin: Harbin Institute of Technology, 2008.
3 刘勋. 基于红外锁相热像的复合结构件应力分析及其实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
3 LIU X. Analysis and experiment study on stress of structure based on lock-in thermography[D]. Harbin: Harbin Institute of Technology, 2012.
4 MALDAGUE X, MARINETTI S Pulse phase infrared thermography[J]. Journal of Applied Physics, 1996, 79 (5): 2694- 2698.
5 ZHAO Y, GUO X, REN M Lock-in infrared thermography for non-destructive testing of grid stiffened composite structure[J]. Advanced Science Letters, 2012, 5 (2): 593- 596.
6 OFFERMANN S, BEAUDOIN J L, BISSIEUX C, et al Thermoelastic stress analysis under nonadiabatic conditions[J]. Experimental Mechanics, 1997, 37 (4): 409- 413.
7 YANG B, LIAW P K, MORRISON M, et al Temperature evolution during fatigue damage[J]. Intermetallics, 2005, 13 (3): 419- 428.
8 MEOLA C, CARLOMAGNO G M Recent advances in the use of infrared thermography[J]. Measurement Science and Technology, 2004, 15 (9): 27.
9 UMMENHOFER T, MEDGENBERG J On the use of infrared thermography for the analysis of fatigue damage processes in welded joints[J]. International Journal of Fatigue, 2009, 31 (1): 130- 137.
10 FAN J L, GUO X L, WU C W, et al Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints[J]. Materials Science and Engineering: A, 2011, 528 (29): 8417- 8427.
11 YAN Z, ZHANG H, WANG W, et al Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (7): 1942- 1948.
12 ZHANG L, LIU X S, WU S H, et al Rapid determination of fatigue life based on temperature evolution[J]. International Journal of Fatigue, 2013, 54, 1- 6.
13 PITARRESI G, PATTERSON E A A review of the general theory of thermoelastic stress analysis[J]. The Journal of Strain Analysis for Engineering Design, 2003, 38 (5): 405- 417.
14 BRÉMOND P, POTET P. Lock-in thermography: a tool to analyze and locate thermomechanical mechanisms in materials and structures[A]. Proceedings of SPIE, Thermosense XXIII[C]. Orlando: SPIE Press, 2001.560-566.
15 KRAPEZ J C, PACOU D. Thermography detection of damage initiation during fatigue tests[A]. Proceedings of SPIE, Thermosense XXIV[C]. Orlando: SPIE Press, 2002.534-449.
16 LUONG M P Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials, 1998, 28 (1): 155- 163.
17 CUR F, CURTI G, SESANA R A new iteration method for the thermographic determination of fatigue limit in steels[J]. International Journal of Fatigue, 2005, 27 (4): 453- 459.
18 李萌, 李旭东, 张辉, 等 基于锁相红外热成像技术对铝合金铆接结构件疲劳极限的快速测定[J]. 工程力学, 2012, 29 (12): 28- 33.
18 LI M, LI X D, ZHANG H, et al Rapid determination of the fatigue limit of aluminum alloy riveted component based on lock-in infrared thermography technique[J]. Engineering Mechanics, 2012, 29 (12): 28- 33.
19 郭杏林, 王晓钢 基于锁相热像法的金属疲劳特性评估方法研究[J]. 机械强度, 2010, 32 (2): 305- 309.
19 GUO X L, WANG X G Research on the evaluation method of metal fatigue properties based on lock-in thermography[J]. Journal of Mechanical Strength, 2010, 32 (2): 305- 309.
20 石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京: 机械工业出版社, 2007.
20 SHI Y P, ZHOU Y R. Example explanation of finite element analysis of ABAQUS[M]. Beijing: China Machine Press, 2007.
21 FAN J, GUO X, WU C A new application of the infrared thermography for fatigue evaluation and damage assessment[J]. International Journal of Fatigue, 2012, 44, 1- 7.
22 RISITANO A, RISITANO G Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters[J]. International Journal of Fatigue, 2012, 48, 214- 222.
23 李光铎, 乔务本 盲孔对应力分布影响的三维有限元分析[J]. 焊接学报, 1989, 10 (2): 111- 118.
23 LI G D, QIAO W B Three dimensional finite elements analysis of the influence of small blind hole on stress distribution[J]. Transactions of the China Welding Institution, 1989, 10 (2): 111- 118.
24 李旭东, 刘勋, 马渊, 等 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28 (11): 218- 224.
24 LI X D, LIU X, MA Y, et al Measuring structure stress distribution using lock-in infrared thermography technique[J]. Engineering Mechanics, 2011, 28 (11): 218- 224.
25 王永茂, 郭兴华, 李日华 红外检测中的缺陷大小和深度的测量[J]. 激光与红外, 2002, 32 (6): 404- 406.
25 WANG Y M, GUO X H, LI R H Measuring defect diameter and depth in infrared testing[J]. Laser & Infrared, 2002, 32 (6): 404- 406.
26 刘俊岩, 戴景民, 王洋 红外锁相法热波检测技术及缺陷深度测量[J]. 光学精密工程, 2010, 18 (1): 37- 44.
26 LIU J Y, DAI J M, WANG Y Thermal wave detection and defect depth measurement based on lock-in thermography[J]. Optics and Precision Engineering, 2010, 18 (1): 37- 44.
27 樊俊铃, 郭杏林, 赵延广, 等 定量热像法预测焊接接头的S-N曲线和残余寿命[J]. 材料工程, 2011, (12): 29- 33.
27 FAN J, GUO X, ZHAO Y, et al Predictions of S-N curve and residual life of welded joints by quantitative thermographic method[J]. Journal of Materials Engineering, 2011, (12): 29- 33.
28 王凯, 闫志峰, 王文先, 等 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, (1): 85- 89.
28 WANG K, YAN Z F, WANG W X, et al Temperature evolution and fatigue properties prediction for high cycle fatigue of magnesium alloy[J]. Journal of materials Engineering, 2014, (1): 85- 89.
29 樊俊铃, 郭杏林, 吴承伟, 等 热像法和能量法快速评估Q235钢的疲劳性能[J]. 材料工程, 2012, (12): 71- 76.
29 FAN J L, GUO X L, WU C W, et al Fast evaluation of fatigue behavior of Q235 steel by infrared thermography and energy approach[J]. Journal of Materials Engineering, 2012, (12): 71- 76.
30 赵延广, 郭杏林, 任明法 含缺陷疲劳试件的锁相红外热成像无损检测[J]. 光学学报, 2010, (10): 2776- 2781.
30 ZHAO Y G, GUO X L, REN M F Lock-in infrared thermography for the non-destructive testing of fatigue specimen with defects[J]. Acta Optica Sinica, 2010, (10): 2776- 2781.
31 胡本润, 刘建中, 陈建峰 疲劳缺口系数Kf与理论应力集中系数Kt之间的关系[J]. 材料工程, 2007, (7): 70- 73.
31 HU B R, LIU J Z, CHEN J F Relationship between fatigue notch factor Kf and stress concentration factor Kt[J]. Journal of Materials Engineering, 2007, (7): 70- 73.
32 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003.
32 YAO W X. Fatigue Life Prediction of Structures[M]. Beijing: Defense Industry Press, 2003.
[1] 王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
[2] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[3] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[4] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
[5] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[6] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[7] 刘彬, 石常亮, 缪文炳, 董世运. 缺陷/应力交互对碳钢Lcr波声弹性系数的影响[J]. 材料工程, 2017, 45(7): 97-102.
[8] 胡春燕, 刘新灵, 陶春虎, 曹春晓. 气膜孔分布对DD6单晶高温合金高周疲劳断裂行为的影响[J]. 材料工程, 2017, 45(4): 84-89.
[9] 王跃, 穆志韬, 李旭东, 郝建滨. 单向拉伸条件下补片参数对复合材料胶接修复结构的影响[J]. 材料工程, 2017, 45(4): 108-112.
[10] 谢孝昌, 李旭东, 汤春峰, 付书红. 直接时效对GH4169合金应力集中敏感性的影响[J]. 材料工程, 2016, 44(2): 88-93.
[11] 王昌盛, 熊江涛, 李京龙, 李鹏, 张赋升, 杨俊. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43(9): 53-59.
[12] 王欣, 尤宏德, 李嘉荣, 赵金乾, 汤智慧, 陆峰. 陶瓷弹丸喷丸强化对DD6单晶高温合金表面完整性的影响[J]. 材料工程, 2014, 0(4): 53-57.
[13] 王凯, 闫志峰, 王文先, 张红霞, 裴飞飞. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, 0(1): 85-89.
[14] 赵彦玲, 周凯, 车万博, 铉佳平, 车春雨. 铝硅合金轧制中增强体颗粒应力集中数值模拟[J]. 材料工程, 2013, 0(3): 51-54,60.
[15] 刘培生, 马晓明. 高孔率泡沫金属材料疲劳表征模型及其实验研究[J]. 材料工程, 2012, 0(5): 47-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn