Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (9): 1-5    DOI: 10.11868/j.issn.1001-4381.2015.09.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Mn含量对热轧超低碳钛低合金钢组织与力学性能的影响
马娅娜, 杜林秀, 胡军
东北大学 轧制技术及连轧自动化国家重点实验室, 沈阳 110819
Effect of Mn Content on Microstructures and Mechanical Properties of Hot-rolled Ultra-low Carbon Ti Low Alloyed Steel
MA Ya-na, DU Lin-xiu, HU Jun
The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
全文: PDF(3046 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 实验钢在传统C-Mn钢的基础上添加低合金元素Ti,通过调整钢中Mn元素含量,同时采用简便的控制轧制与控制冷却工艺,获得了良好的组织形态及纳米尺度析出物,从而在保证优良延伸性能的前提下大幅度提高了钢板的强度,显著降低了钢材成本。使用金相显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对微观组织进行观察。结果表明:当实验钢Mn含量从1.05%(质量分数,下同)提高至1.5%,平均晶粒尺寸从6.4μm细化至5.2μm;基体中纳米尺度TiC的析出量明显增加;屈服强度、抗拉强度和断后伸长率分别提高了56.7,42.2MPa和1.2%,达到了558.7,662.2MPa和22.4%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马娅娜
杜林秀
胡军
关键词 Mn含量超低碳低合金钢组织与性能    
Abstract:Based on conventional C-Mn steel, low alloyed element Ti was appropriately added to the experimental steels, and the content of Mn was adjusted. Meanwhile, the simple thermo mechanical control process (TMCP) was adopted. As a result, the good microstructural morphology and nano-scale precipitates were obtained. Therefore, the strength of steel plate obviously increased under the premise of guaranteed good elongation, and the cost of steel was reduced significantly. The microstructures were observed by OM, SEM, and TEM. The results show that when Mn content in the experimental steels increases from 1.05% (mass fraction) to 1.5%, the average grain size is refined from 6.4μm to 5.2μm, the nano-scale precipitates of TiC increase evidently. At the same time, the yield strength, the tensile strength and elongation increase by 56.7, 42.2MPa and 1.2%, and reach 558.7, 662.2MPa and 22.4%.
Key wordsMn content    ultra-low carbon    low alloyed steel    titanium    microstructure and property
收稿日期: 2014-03-31      出版日期: 2015-09-26
1:  TG335.3  
通讯作者: 杜林秀(1962-),男,教授,博士生导师,主要从事材料成形过程组织性能控制、低成本高性能钢材产品开发等方面的研究工作,E-mail:dulx@ral.neu.edu.cn     E-mail: dulx@ral.neu.edu.cn
引用本文:   
马娅娜, 杜林秀, 胡军. Mn含量对热轧超低碳钛低合金钢组织与力学性能的影响[J]. 材料工程, 2015, 43(9): 1-5.
MA Ya-na, DU Lin-xiu, HU Jun. Effect of Mn Content on Microstructures and Mechanical Properties of Hot-rolled Ultra-low Carbon Ti Low Alloyed Steel. Journal of Materials Engineering, 2015, 43(9): 1-5.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.001      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/1
[1] RODRIGUES P C M, PERELOMA E V, SANTOS D B. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering: A, 2000, 283(1-2): 136-143.
[2] MORRISON W B. Microalloy steels-the beginning[J]. Materials Science and Technology, 2009, 25(9): 1066-1073.
[3] 岳重祥, 白晓虹, 刘东升. 利用TMCP开发F550高强度船板钢的实验研究[J]. 材料工程, 2013, (2): 7-11. YUE Chong-xiang, BAI Xiao-hong, LIU Dong-sheng. F550 high strength plate steel for shipbuilding produced by TMCP[J]. Journal of Materials Engineering, 2013, (2): 7-11.
[4] 王建锋,李光强,温德智,等. 600MPa级钛微合金化高强钢的组织与性能研究[J]. 武汉科技大学学报, 2010, 33(6): 561-565. WANG Jian-feng, LI Guang-qiang, WEN De-zhi, et al. Microstructure and properties of 600 MPa Ti-microalloyed high strength strip[J]. Journal of Wuhan University of Science and Technology, 2010, 33(6): 561-565.
[5] HU J, DU L X, WANG J J. Effect of V on intragranular ferrite nucleation of high Ti bearing steel[J]. Scripta Materialia, 2013, 68(12): 953-956.
[6] 衣海龙, 徐洋, 徐兆国, 等. 低成本780MPa级热轧高强钢的组织与性能[J]. 机械工程材料, 2010, 34(12): 37-39. YI Hai-long, XU Yang, XU Zhao-guo, et al. Microstructure and properties of low cost 780MPa hot-rolled high-strength steel[J]. Materials for Mechanical Engineering, 2010, 34(12): 37-39.
[7] MISRA R D K, NATHANI H, HARTMANN J E, et al. Microstructural evolution in a new 770MPa hot rolled Nb-Ti microalloyed steel[J]. Materials Science and Engineering: A, 2005, 394(1-2): 339-352.
[8] FUNAKAWA Y, SHIOZAKI T, TOMITA K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951.
[9] SEKITA T, KANETO S, HASUNO S, et al. Materials and technologies for automotive use[R]. Japan: JFE Technical Report, 2004.
[10] 周荣锋, 杨王玥, 孙祖庆. 不同Mn含量低碳钢过冷奥氏体形变过程中的铁素体相变[J]. 金属学报, 2004, 40(1): 1-7. ZHOU Rong-feng, YANG Wang-yue, SUN Zu-qing. Ferrite transformation during deformation of undercooled austenite in low carbon steels with different Mn contents[J]. Acta Metallurgica Sinica, 2004, 40(1): 1-7.
[11] HU J, DU L X, WANG J J, et al. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling[J]. Materials Science and Engineering: A, 2013, 585: 197-201.
[12] IRVING K J, PICKERING F B, GLADMAN T. Grain-refined C-Mn steels[J]. Journal of the Iron and Steel Institute, 1967, 205(2): 161-182.
[13] AKBEN M G, CHANDRA T, PLASSIARD P, et al. Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese[J]. Acta Metallurgica, 1984, 32(4): 591-601.
[14] WANG Z Q, SUN X J, YANG Z G, et al. Effect of Mn concentration on the kinetics of strain induced precipitation in Ti microalloyed steels[J]. Materials Science and Engineering: A, 2013, 561:212-219.
[15] 王有铭, 李曼云, 韦光. 钢材的控制轧制和控制冷却[M].北京: 冶金工业出版社, 2012.54-55.
[16] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.310-316.
[17] ARONSON H I. The Mechanism of Phase Transformation in Crystalline[M]. London: Institute of Metals, 1969.2790.
[18] PICKERING F B. Physical Metallurgy of Microalloyed Steels[M]. London: Applied Science Publishers, 1978.15-20.
[1] 王婧, 任会兰, 郝莉, 宁建国. 多孔钛材料的动态力学响应研究[J]. 材料工程, 2015, 43(9): 87-93.
[2] 景红霞, 李巧玲, 叶云, 裴王军. 羰基铁/钛酸钡复合材料的制备及吸波性能[J]. 材料工程, 2015, 43(7): 38-42.
[3] 张涛, 付明杰, 韩秀全, 吴为. TNW700钛合金板材热弯曲性能[J]. 材料工程, 2015, 43(7): 68-72.
[4] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
[5] 陈雅斓, 刘海昌, 滕元成. 热压烧结掺钕钛酸盐组合矿物固化体及其浸出性能[J]. 材料工程, 2015, 43(5): 56-61.
[6] 杨闯, 彭晓东, 刘静, 马亚芹, 王华. TC4钛合金低压真空氮化改性层的制备与性能[J]. 材料工程, 2015, 43(3): 78-82.
[7] 曹文斌, 许军娜, 刘文秀, 孙芃, 张欣. 可见光活性氮掺杂纳米二氧化钛研究进展[J]. 材料工程, 2015, 43(3): 83-90.
[8] 刘胜明, 汤爱涛, 陈敏, 赵子鹏. 钛铁矿原位反应合成Al2O3-TiC颗粒增强铁基复合材料[J]. 材料工程, 2015, 43(1): 18-23.
[9] 王晶, 张亦良, 李晓慧, 胡伟, 李晋伟. 疲劳可靠性实验中的“截尾寿命”处理方法[J]. 材料工程, 2014, 0(7): 85-91.
[10] 徐秀国, 许崇海, 方斌, 王春林, 衣明东. TiB2/WC/h-BN自润滑陶瓷材料的制备及力学性能[J]. 材料工程, 2014, 0(4): 63-67.
[11] 王宏, 都玲, 孙欣, 张文杰. PEG4000用量对溶胶-凝胶法制备多孔钛酸锶光催化剂的影响[J]. 材料工程, 2014, 0(12): 39-43.
[12] 沙爱学, 李兴无, 王庆如. 变形量对TC18钛合金力学性能的影响[J]. 材料工程, 2014, 0(11): 34-37.
[13] 周冰, 康永林, 祁明凡, 张欢欢, 朱国明, 吴征洋. AZ91D镁合金强制对流流变压铸组织与性能[J]. 材料工程, 2014, 0(10): 1-5.
[14] 李朋, 赵昆渝, 郭军, 张晓娟, 戴丹, 黄峰. TiO2纳米孔到纳米管结构转变的因素及其机理研究[J]. 材料工程, 2014, 0(1): 58-63,74.
[15] 卢金文, 葛鹏, 赵永庆. Mo对Ti-Mo系合金显微组织的影响及其强化效应[J]. 材料工程, 2013, 0(9): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn