Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (9): 12-18    DOI: 10.11868/j.issn.1001-4381.2015.09.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
316L不锈钢在不同环境中点蚀形核研究
王晶1, 尚新春1, 路民旭2, 张雷2
1. 北京科技大学 数理学院, 北京 100083;
2. 北京科技大学 材料科学与工程学院, 北京 100083
Pitting Nucleation of 316L Stainless Steel in Different Environments
WANG Jing1, SHANG Xin-chun1, LU Min-xu2, ZHANG Lei2
1. School of Mathematics and Physical, University of Science and Technology Beijing, Beijing 100083, China;
2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(2579 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过人工海水中长期浸泡实验和循环伏安极化曲线测试,研究了温度、Cl-浓度、溶解氧浓度对抛光后的316L不锈钢点蚀形核的影响,确定了不锈钢在不同环境的人工海水中点蚀的萌生时间和位置。结果表明:与温度和Cl-浓度的影响不同,溶解氧浓度的增加对不锈钢点蚀形核具有抑制作用。316L不锈钢在4℃,8×10-6溶解氧浓度,10%(质量分数)NaCl溶液中浸泡后表面出现钝化膜局部破坏,点蚀形核时间为60~70天,形核位置存在MgO-Al2O3系和CaO-SiO2系非金属夹杂物。不锈钢在4℃人工海水和0.02×10-6溶氧量浓度下浸泡后,表面出现点蚀的时间为70~80天。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晶
尚新春
路民旭
张雷
关键词 不锈钢点蚀形核钝化膜夹杂物    
Abstract:Effect of temperature, concentration of chloride ion and dissolved oxygen concentration on pitting nucleation of polished 316L stainless steel was investigated using long-term immersing experiment and cyclic potentiodynamic polarization curves. Pitting initiated time and location in different artificial sea water environments were determined. The results show that pitting nucleation can be inhibited with increasing dissolved oxygen concentration, which is different from effect of temperature and chloride ion. For 316L stainless steel, after immersed in 10% (mass fraction) NaCl solution with 8×10-6 dissolved oxygen concentration at 4℃, local destroy occurs on the surface passive film, pitting nucleation time is 60-70 days, and MgO-Al2O3 series and CaO-SiO2 oxide series non-metal inclusions exist at the pitting nucleation sites. After immersed in artificial sea water at 4℃, and with 0.02×10-6 dissolved oxygen concentration, the time for pitting corrosion appears on the surface of 316 stainless steel is 70-80 days.
Key wordsstainless steel    pitting corrosion    nucleation    passive film    inclusion
收稿日期: 2015-03-17      出版日期: 2015-09-26
中图分类号:  TG172.5  
通讯作者: 王晶(1983-),女,博士,研究方向:金属材料的腐蚀与防护,联系地址:北京市海淀区北四环中路229号海泰大厦1702室(100083),E-mail:wzw0701@163.com     E-mail: wzw0701@163.com
引用本文:   
王晶, 尚新春, 路民旭, 张雷. 316L不锈钢在不同环境中点蚀形核研究[J]. 材料工程, 2015, 43(9): 12-18.
WANG Jing, SHANG Xin-chun, LU Min-xu, ZHANG Lei. Pitting Nucleation of 316L Stainless Steel in Different Environments. Journal of Materials Engineering, 2015, 43(9): 12-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.003      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/12
[1] 何宁,王桂林,段梦兰,等.深水油气田开发中的中深水输送概念[J].石油工程建设,2010,36(3):33-36. HE Ning, WANG Gui-lin, DUAN Meng-lan, et al. Concept of medium-depth pipeline transportation in deepwater oil and gas fields development[J]. Petroleum Engineering Construction, 2010, 36(3): 33-36.
[2] EGHBALI F, MOAYED M H, DAVOODI A. Critical pitting temperature (CPT) assessment of 2205 duplex stainless steel in 0.1M NaCl at various molybdate concentration[J]. Corrosion Science, 2011, 53(1): 513-522.
[3] 刘莉,李瑛,王福会.钝性纳米金属材料的电化学腐蚀行为研究:钝化膜生长和局部点蚀行为[J].金属学报,2014,50(2):212-218. LIU Li, LI Ying, WANG Fu-hui. Electrochemical corrosion behavior of nanocrystallized materials: growth of passive film and local pitting corrosion[J]. Acta Metallurgica Sinica, 2014, 50(2): 212-218.
[4] ERNST P, NEWMAN R C. Pit growth studies in stainless steel foils.Ⅰ. Introduction and pit growth kinetics[J]. Corrosion Science, 2002, 44(5): 927-941.
[5] LECKIE H P, UHLIG H H. Environmental factors affecting the critical potential for pitting in 18-8 stainless steel[J]. Electrochem Soc, 1966, 113(12): 1262-1267.
[6] 郑家青,龚利华,郭为民,等.不同温度下溶解氧对304不锈钢在海水中腐蚀性能的影响[J].腐蚀与防护,2011,32(9):708-711. ZHENG Jia-qing, GONG Li-hua, GUO Wei-min, et al. Effect of temperature and dissolved oxygen on corrosion properties of 304 stainless steel in seawater[J]. Corrosion & Protection, 2011, 32(9): 708-711.
[7] ZHENG J H, BOGAERTS W F, PHLIPPO K. Effects of dissolved oxygen and hydrogen peroxide on the corrosion potential of 316L stainless steel in hot lithium hydroxide solution[J]. Fusion Engineering and Design, 1994, 24(3): 299-307.
[8] ZHANG T, WANG D Y, SHAO Y W, et al. A new criterion to determine the critical pitting temperature(CPT) based on electrochemical noise measurement[J]. Corrosion Science, 2012, 58(5): 202-210.
[9] VENKATESHAN R, VENKATASAMY M A, BHASKARAN T A, et al. Corrosion of ferrous alloys in deep sea environments[J]. British Corrosion Journal, 2002, 37(4): 257-266.
[10] ZHENG S J, WANG Y J, ZHANG B, et al. Identification of MNCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels[J]. Acta Mater, 2010, 58(15): 5070-5085.
[11] 辛森森,李谋成,沈嘉年.海水温度和浓缩度对316L不锈钢点蚀性能的影响[J].金属学报,2014,50(3):373-378. XIN Sen-sen, LI Mou-cheng, SHEN Jia-nian. Effect of temperature and concentration ratio on pitting resistance of 316L stainless steel in seawater[J]. Acta Metallurgica Sinica, 2014, 50 (3): 373-378.
[12] GERINGER J, MACDONALD D D. Modeling fretting-corrosion wear of 316L SS against poly(methyl methacrylate) with the point defect model: fundamental theory, assessment, and outlook[J]. Electrochim Acta, 2012, 79(9): 17-30.
[13] SAZOU D, SALTIDOU K, PAGITSAS M. Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model[J]. Electrochim Acta, 2012, 76(8):48-61.
[14] FATTAH-ALHOSSEINI A, SOLTANI F, SHIRSALIMI F. The semiconducting properties of passive films formed on AISI 316L and AISI 321 stainless steels: a test of the point defect model (PDM)[J]. Corrosion Science, 2012, 53: 3186-3192.
[15] LIU J, ZHANG T, MENG G Z, et al. Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation[J]. Corrosion Science, 2015, 91(2):232-244.
[16] MENG G Z, LI Y, SHAO Y W, et al. Effect of Cl- on the properties of the passive films formed on 316L stainless steel in acidic solution[J]. Journal of Materials Science and Technology, 2014, 30(3): 253-258.
[17] 杜楠,叶超,田文明,等.304不锈钢点蚀行为的电化学阻抗谱研究[J].材料工程,2014,(6):68-73. DU Nan, YE Chao, TIAN Wen-ming,et al. 304 stainless steel pitting behavior by means of electrochemical impedance spectroscopy[J]. Journal of Materials Engineering, 2014,(6):68-73.
[1] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[2] 王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
[3] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[4] 姚祥宏, 周琦, 王克鸿, 章晓勇. 基于焊道尺寸控制的电弧增材成形高氮奥氏体不锈钢与316L不锈钢交织结构[J]. 材料工程, 2020, 48(1): 54-60.
[5] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[6] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[7] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
[8] 郭军, 杨卯生, 卢德宏, 李新宇. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理[J]. 材料工程, 2019, 47(7): 134-143.
[9] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[10] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[11] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[12] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[13] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[14] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[15] 许婷, 方晓英, 朱言利, 王铭, 尹文红, 郭红. 双相不锈钢中奥氏体沉淀相的晶粒取向及界面特征分布[J]. 材料工程, 2018, 46(2): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn