The effect of alloying elements on mechanical behavior of Fe-Mn-C TWIP steels was investigated by thermodynamic calculation, static tensile test, XRD, OM and SEM. Results indicate that with manganese content increasing, the yield strength and tensile strength of TWIP steels decrease, while the total elongation varies oppositely. As carbon content increases, the yield strength and tensile strength increase initially and then decline with the maximum located near 0.6%(mass fraction) carbon. When Mn is at 20%, the elongation of TWIP steel increases with carbon content increasing, but exhibits reversed trend in the steels with 22% manganese. The product of tensile strength and elongation increases with manganese content increasing, and it is more obvious in the TWIP steels with 0.4% carbon. As the manganese content is equal to 20%, the product of tensile strength and elongation increases with carbon content increasing. However, for the specimens alloyed with 22% manganese, the product of tensile strength and elongation decreases with carbon content increasing.
GRASSEL O, FROMMEYER G Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J]. Materials Science & Technology, 1998, 14 (12): 1213- 1217.
2
GRASSEL O, KRUGER L, FROMMEYER G, et al High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development properties application[J]. International Journal of Plasticity, 2000, 16 (10): 1391- 1409.
YI Hai-long, XU Wei, LONG Lei-zhou, et al Research on microstructure and mechanical properties of hot rolled Ti-microalloyed TRIP steel[J]. Journal of Materials Engineering, 2014, (12): 66- 71.
4
KWON O, LEE K Y, KIM G S, et al New trends in advanced high strength steel developments for automotive application[J]. Materials Science Forum, 2010, 638-642, 136- 141.
5
FROMMEYER G, BRUX U, NEUMANN P Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ International, 2003, 43 (3): 438- 446.
6
SCOTT C, ALLAIN S, FARAL M, et al The development of a new Fe-Mn-C austenitic steel for automotive applications[J]. Revue de Métallurgie, 2006, 103 (6): 293- 302.
7
MOON K H, PARK M S, YOO S, et al. Molten mold flux technology for continuous casting of the ULC and TWIP steel[A]. 8 Pacific Rim International Congress on Advanced Materials and Processing[C]. New Jersey: John Wiley & Sons, Inc, 2013.735-745.
SU Yu, LI Lin, HE Shen, et al Annealing texture and grain boundary character of TWIP steels[J]. Transactions of Materials and Heat Treatment, 2010, 31 (7): 71- 76.
LI Ji-guang, DING Ya-jie, PENG Xing-dong, et al Effect of water quenching process on the microstructure and mechanical properties of TWIP steel[J]. Acta Metallurgica Sinica, 2010, 46 (2): 221- 226.
10
LAN P, SONG L, DU C, et al Analysis of solidification microstructure and hot ductility of Fe-22Mn-0[J]. 7C TWIP steel[J]. Materials Science and Technology, 2014, 30 (11): 1297- 1304.
WANG Hui-zhen, YANG Ping, MAO Wei-min 3D EBSD analysis of morphology and habit plane for lath martensite[J]. Journal of Materials Engineering, 2013, (4): 74- 80.
12
CHEN L, ZHAO Y, QIN X Some aspects of high manganese twinning-induced plasticity(TWIP) steel, a review[J]. Acta Metallurgica Sinica (English Letters), 2013, 26 (1): 1- 15.
13
De COOMEN B C, KWON O, CHIN K G State-of-the-knowledge on TWIP steel[J]. Materials Science and Technology, 2012, 28 (5): 513- 527.
14
GIGACHER G, PIERER R, WIENER J, et al Metallurgical aspects of casting high-manganese steel grades[J]. Advanced Engineering Materials, 2006, 8 (11): 1096- 1100.
15
ALLAIN S, CHATEAU J P, BOUAZIZ O, et al Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering: A, 2004, 387, 158- 162.
16
DUMAY A, CHATEAU J P, ALLAIN S, et al Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering: A, 2008, 483, 184- 187.
17
DING H, TANG Z, LI W, et al Microstructures and mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels[J]. Journal of Iron and Steel Research International, 2006, 13 (6): 66- 70.
18
MI Z L, TANG D, YAN L, et al High-strength and high-plasticity TWIP steel for modern vehicle[J]. Journal of Materials Science and Technology, 2005, 21 (4): 451- 454.
FANG Xiu-hui, YANG Ping, LU Fa-yun, et al Texture evolution and texture weakening by twinning in tensile-deformed high manganese TWIP steels[J]. Journal of Wuhan University of Science and Technology, 2011, 34 (6): 424- 431.
LU Hui-ju, HE Yan-lin, LI Lin Study of TRIP and TWIP effects and stacking fault in high Mn steels[J]. Shanghai Metals, 2011, 33 (1): 1- 7.
21
NAKANO J, JACQUES P J Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems[J]. Calphad, 2010, 34 (2): 167- 175.
22
DINSDALE A T SGTE data for pure elements[J]. Calphad, 1991, 15 (4): 317- 425.
23
HUANG W A thermodynamic assessment of the Fe-Mn-C system[J]. Metallurgical Transactions A, 1990, 21 (8): 2115- 2123.
24
HOFFMANN S, BLECK W, BERME B In situ characterization of deformation behavior of austenitic high manganese steels[J]. Steel Research International, 2012, 83 (4): 379- 384.
25
HONG S, SHIN S Y, LEE J, et al Serration phenomena occurring during tensile tests of three high-manganese twinning-induced plasticity (TWIP) steels[J]. Metallurgical and Materials Transactions A, 2014, 45 (2): 633- 646.
26
LI D Z, WEI Y H, XU B S, et al Development in fundamental research on TWIP steel used in automobile industry[J]. Ironmaking & Steelmaking, 2011, 38 (7): 540- 545.
27
ADLER P H, OLSON G B, OWEN W S Strain hardening of Hadfield manganese steel[J]. Metallurgical and Materials Transactions A, 1986, 17 (10): 1725- 1737.