Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (9): 30-38    DOI: 10.11868/j.issn.1001-4381.2015.09.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
合金元素对Fe-Mn-C系TWIP钢力学行为的影响
王玉昌, 兰鹏(), 李杨, 张家泉
北京科技大学 钢铁冶金新技术国家重点实验室, 北京 100083
Effect of Alloying Elements on Mechanical Behavior of Fe-Mn-C TWIP Steel
Yu-chang WANG, Peng LAN(), Yang LI, Jia-quan ZHANG
State Key Laboratory of Advanced Metallurgy, University of Science & Technology Beijing, Beijing 100083, China
全文: PDF(5006 KB)   HTML ( 84 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用热力学计算、静态拉伸、XRD、OM与SEM等方法分析了 Fe-Mn-C系TWIP钢中合金元素对基体力学行为的影响。结果表明:TWIP钢中Mn含量增加时,基体的屈服强度和抗拉强度均减小,总伸长率增大;C含量增加时,其屈服强度和抗拉强度先增大后减小,在0.6%(质量分数,下同)时存在最大值;当Mn含量为20%时,TWIP钢总伸长率随C含量增加而增大,而Mn含量为22%时则相反。TWIP钢的强塑积随Mn含量的增加而增大,其在C含量为0.4%试样中的体现尤为明显。对于Mn含量为20%的TWIP钢,其强塑积随C含量增加而增大;而对于Mn含量为22%的TWIP钢,其强塑积随C含量增加而减小。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉昌
兰鹏
李杨
张家泉
关键词 TWIP钢合金元素力学行为层错能    
Abstract

The effect of alloying elements on mechanical behavior of Fe-Mn-C TWIP steels was investigated by thermodynamic calculation, static tensile test, XRD, OM and SEM. Results indicate that with manganese content increasing, the yield strength and tensile strength of TWIP steels decrease, while the total elongation varies oppositely. As carbon content increases, the yield strength and tensile strength increase initially and then decline with the maximum located near 0.6%(mass fraction) carbon. When Mn is at 20%, the elongation of TWIP steel increases with carbon content increasing, but exhibits reversed trend in the steels with 22% manganese. The product of tensile strength and elongation increases with manganese content increasing, and it is more obvious in the TWIP steels with 0.4% carbon. As the manganese content is equal to 20%, the product of tensile strength and elongation increases with carbon content increasing. However, for the specimens alloyed with 22% manganese, the product of tensile strength and elongation decreases with carbon content increasing.

Key wordsTWIP steel    alloying element    mechanical behavior    stacking fault energy
收稿日期: 2014-12-08      出版日期: 2015-09-26
基金资助:钢铁冶金新技术国家重点实验室基金项目(41603013)
通讯作者: 兰鹏     E-mail: lanpeng@ustb.edu.cn
作者简介: 兰鹏(1985—),男,博士,主要研究方向为先进汽车钢组织和性能控制,联系地址:北京市海淀区学院路30号北京科技大学冶金楼417-1(100083),E-mail:lanpeng@ustb.edu.cn
引用本文:   
王玉昌, 兰鹏, 李杨, 张家泉. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程, 2015, 43(9): 30-38.
Yu-chang WANG, Peng LAN, Yang LI, Jia-quan ZHANG. Effect of Alloying Elements on Mechanical Behavior of Fe-Mn-C TWIP Steel. Journal of Materials Engineering, 2015, 43(9): 30-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.006      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/30
Specimen No. TWIP steel Mn C Si P S O N Fe
1# Fe-20Mn-0.4C 19.74 0.46 0.17 0.005 0.005 0.0017 0.0050 Bal
2# Fe-20Mn-0.6C 20.08 0.61 - - - - - Bal
3# Fe-22Mn-0.4C 22.28 0.42 - - - - - Bal
4# Fe-22Mn-0.5C 22.18 0.52 - - - - - Bal
5# Fe-22Mn-0.6C 22.07 0.60 - - - - - Bal
6# Fe-22Mn-0.7C 22.18 0.71 - - - - - Bal
7# Fe-24Mn-0.6C 23.77 0.60 - - - - - Bal
Table 1  Fe-Mn-C系TWIP钢化学成分(质量分数/%)
Fig.1  Fe-Mn-C系的三元相图
(a)1200℃;(b)600℃
Fig.2  Fe-Mn-C系奥氏体钢25℃时的堆垛层错能
Specimen No. SFE/(mJ·m-2)
1# 14.0
2# 20.4
3# 19.4
4# 23.0
5# 26.3
6# 29.4
7# 33.5
Table 2  Fe-Mn-C系TWIP钢的堆垛层错能
Fig.3  Fe-Mn-C系TWIP钢工程应力-应变曲线
(a)3#;(b)5#
Specimen No. Process Rp0.2/MPa Rm/MPa Rp0.2/Rm Agt /% At/% (Rm ×At)/(GPa·%)
1# Hot rolled 511.9 1039.3 0.4925 45.90 59.47 61.8
Cold rolled - 1460.3 - - - -
Annealed 437.7 1023.1 0.4278 47.25 48.04 49.1
2# Hot rolled 503.2 1032.7 0.4873 37.14 37.27 38.5
Cold rolled - 1459.0 - - - -
Annealed 459.8 1101.8 0.4146 56.66 57.25 63.1
3# Hot rolled 331.5 917.7 0.3612 50.68 57.92 53.2
Cold rolled - 1532.4 - - - -
Annealed 401.7 985.3 0.4077 54.55 67.98 67.0
4# Hot rolled 354.5 993.2 0.3569 52.94 59.98 59.6
Cold rolled - 1389.5 - - - -
Annealed 392.5 1007.2 0.3897 50.13 60.81 61.2
5# Hot rolled 309.1 860.9 0.3590 52.46 60.10 51.7
Cold rolled - 1420.4 - - - -
Annealed 423.2 1044.3 0.4052 50.84 58.85 61.5
6# Hot rolled 533.8 1021.5 0.5226 21.89 22.78 23.3
Cold rolled - 1420.4 - - - -
Annealed 396.0 973.0 0.4070 51.31 56.71 55.2
7# Hot rolled 416.0 1002.1 0.4151 55.82 66.90 67.0
Cold rolled - 1437.7 - - - -
Annealed 419.3 1026.1 0.4086 54.85 66.41 68.1
Table 3  室温下TWIP钢试样在0.001s-1时的拉伸实验结果
Fig.4  TWIP钢拉伸前后的X射线衍射结果
(a)拉伸前;(b)拉伸后
Fig.5  TWIP钢试样的晶粒形貌
(a)1#;(b)2#;(c)3#;(d)4#
Fig.6  TWIP钢屈服强度随合金元素含量的变化
(a)Mn;(b)C
Fig.7  TWIP钢抗拉强度随合金元素含量的变化
(a)Mn;(b)C
Fig.8  TWIP钢伸长率随合金元素含量的变化
(a)Mn;(b)C
Fig.9  TWIP钢试样的晶粒形貌
(a)3#;(b)6#
Fig.10  TWIP钢屈强比随合金元素含量的变化
(a)Mn;(b)C
Fig.11  TWIP钢强塑积随合金元素含量的变化
(a)Mn;(b)C
1 GRASSEL O, FROMMEYER G Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J]. Materials Science & Technology, 1998, 14 (12): 1213- 1217.
2 GRASSEL O, KRUGER L, FROMMEYER G, et al High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development properties application[J]. International Journal of Plasticity, 2000, 16 (10): 1391- 1409.
3 衣海龙, 徐薇, 龙雷周, 等 热轧钛微合金化TRIP钢的组织与性能研究[J]. 材料工程, 2014, (12): 66- 71.
3 YI Hai-long, XU Wei, LONG Lei-zhou, et al Research on microstructure and mechanical properties of hot rolled Ti-microalloyed TRIP steel[J]. Journal of Materials Engineering, 2014, (12): 66- 71.
4 KWON O, LEE K Y, KIM G S, et al New trends in advanced high strength steel developments for automotive application[J]. Materials Science Forum, 2010, 638-642, 136- 141.
5 FROMMEYER G, BRUX U, NEUMANN P Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ International, 2003, 43 (3): 438- 446.
6 SCOTT C, ALLAIN S, FARAL M, et al The development of a new Fe-Mn-C austenitic steel for automotive applications[J]. Revue de Métallurgie, 2006, 103 (6): 293- 302.
7 MOON K H, PARK M S, YOO S, et al. Molten mold flux technology for continuous casting of the ULC and TWIP steel[A]. 8 Pacific Rim International Congress on Advanced Materials and Processing[C]. New Jersey: John Wiley & Sons, Inc, 2013.735-745.
8 苏钰, 李麟, 何慎, 等 TWIP 钢退火织构与晶界特征[J]. 材料热处理学报, 2010, 31 (7): 71- 76.
8 SU Yu, LI Lin, HE Shen, et al Annealing texture and grain boundary character of TWIP steels[J]. Transactions of Materials and Heat Treatment, 2010, 31 (7): 71- 76.
9 李激光, 丁亚杰, 彭兴东, 等 水淬工艺对 TWIP 钢显微组织和力学性能的影响[J]. 金属学报, 2010, 46 (2): 221- 226.
9 LI Ji-guang, DING Ya-jie, PENG Xing-dong, et al Effect of water quenching process on the microstructure and mechanical properties of TWIP steel[J]. Acta Metallurgica Sinica, 2010, 46 (2): 221- 226.
10 LAN P, SONG L, DU C, et al Analysis of solidification microstructure and hot ductility of Fe-22Mn-0[J]. 7C TWIP steel[J]. Materials Science and Technology, 2014, 30 (11): 1297- 1304.
11 王会珍, 杨平, 毛卫民 板条状马氏体形貌和惯习面的3D EBSD分析[J]. 材料工程, 2013, (4): 74- 80.
11 WANG Hui-zhen, YANG Ping, MAO Wei-min 3D EBSD analysis of morphology and habit plane for lath martensite[J]. Journal of Materials Engineering, 2013, (4): 74- 80.
12 CHEN L, ZHAO Y, QIN X Some aspects of high manganese twinning-induced plasticity(TWIP) steel, a review[J]. Acta Metallurgica Sinica (English Letters), 2013, 26 (1): 1- 15.
13 De COOMEN B C, KWON O, CHIN K G State-of-the-knowledge on TWIP steel[J]. Materials Science and Technology, 2012, 28 (5): 513- 527.
14 GIGACHER G, PIERER R, WIENER J, et al Metallurgical aspects of casting high-manganese steel grades[J]. Advanced Engineering Materials, 2006, 8 (11): 1096- 1100.
15 ALLAIN S, CHATEAU J P, BOUAZIZ O, et al Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering: A, 2004, 387, 158- 162.
16 DUMAY A, CHATEAU J P, ALLAIN S, et al Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering: A, 2008, 483, 184- 187.
17 DING H, TANG Z, LI W, et al Microstructures and mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels[J]. Journal of Iron and Steel Research International, 2006, 13 (6): 66- 70.
18 MI Z L, TANG D, YAN L, et al High-strength and high-plasticity TWIP steel for modern vehicle[J]. Journal of Materials Science and Technology, 2005, 21 (4): 451- 454.
19 房秀慧, 杨平, 鲁法云, 等 高锰TWIP钢拉伸时织构演变和孪生弱化织构的作用[J]. 武汉科技大学学报, 2011, 34 (6): 424- 431.
19 FANG Xiu-hui, YANG Ping, LU Fa-yun, et al Texture evolution and texture weakening by twinning in tensile-deformed high manganese TWIP steels[J]. Journal of Wuhan University of Science and Technology, 2011, 34 (6): 424- 431.
20 陆惠菊, 何燕霖, 李麟 高锰钢中的TRIP和TWIP效应以及层错能研究[J]. 上海金属, 2011, 33 (1): 1- 7.
20 LU Hui-ju, HE Yan-lin, LI Lin Study of TRIP and TWIP effects and stacking fault in high Mn steels[J]. Shanghai Metals, 2011, 33 (1): 1- 7.
21 NAKANO J, JACQUES P J Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems[J]. Calphad, 2010, 34 (2): 167- 175.
22 DINSDALE A T SGTE data for pure elements[J]. Calphad, 1991, 15 (4): 317- 425.
23 HUANG W A thermodynamic assessment of the Fe-Mn-C system[J]. Metallurgical Transactions A, 1990, 21 (8): 2115- 2123.
24 HOFFMANN S, BLECK W, BERME B In situ characterization of deformation behavior of austenitic high manganese steels[J]. Steel Research International, 2012, 83 (4): 379- 384.
25 HONG S, SHIN S Y, LEE J, et al Serration phenomena occurring during tensile tests of three high-manganese twinning-induced plasticity (TWIP) steels[J]. Metallurgical and Materials Transactions A, 2014, 45 (2): 633- 646.
26 LI D Z, WEI Y H, XU B S, et al Development in fundamental research on TWIP steel used in automobile industry[J]. Ironmaking & Steelmaking, 2011, 38 (7): 540- 545.
27 ADLER P H, OLSON G B, OWEN W S Strain hardening of Hadfield manganese steel[J]. Metallurgical and Materials Transactions A, 1986, 17 (10): 1725- 1737.
[1] 赵晋斌, 王潘俊, 陈云翔, 程学群, 李晓刚. 新型Cu-Cr-Ni系耐海水腐蚀钢耐蚀性能及机理[J]. 材料工程, 2023, 51(1): 104-112.
[2] 张路, 袁芳, 王文清, 董星杰, 何汝杰. 面向一体化热防护的陶瓷基复合材料轻量化结构研究进展与挑战[J]. 材料工程, 2022, 50(10): 15-28.
[3] 阴明, 孙俊丽, 鲍同尧, 刘笑达, 杜华云, 卫英慧, 侯利锋. 合金元素对镁合金耐腐蚀性能影响的研究进展[J]. 材料工程, 2021, 49(12): 28-39.
[4] 杨泽南, 李赛, 于俊杰, 谢强, 王祯, 张明达, 董浩凯, 张强, 杨志刚. 合金元素配分对珠光体相变热动力学及其奥氏体化影响的研究进展[J]. 材料工程, 2020, 48(7): 61-71.
[5] 闫化锦, 田素贵, 朱新杰, 于慧臣, 舒德龙, 张宝帅. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87-95.
[6] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[7] 范清松, 杨忠波, 周军, 石明华, 陈鑫, 李中奎. Zr-Sn-Nb-Fe系锆合金中第二相粒子研究进展[J]. 材料工程, 2016, 44(4): 110-118.
[8] 张敏, 刘明志, 张明, 李继红. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响[J]. 材料工程, 2016, 44(3): 40-45.
[9] 王建亭, 周荣生, 王明杰, 朱定一. 形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响[J]. 材料工程, 2016, 44(1): 11-18.
[10] 高禹, 王钊, 陆春, 包建文, 宋恩鹏, 董尚利. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43(3): 106-112.
[11] 蔡登安, 周光明, 王新峰, 钱元, 刘伟先. 双向玻纤织物复合材料双轴拉伸载荷下的力学行为[J]. 材料工程, 2014, 0(5): 73-77.
[12] 郭洪宝, 王波, 矫桂琼, 刘永胜. 2D-Cf/SiC复合材料缺口试件拉伸力学行为研究[J]. 材料工程, 2013, 0(5): 83-88.
[13] 杨少锋, 王再友. 压铸镁合金的研究进展及发展趋势[J]. 材料工程, 2013, 0(11): 81-88.
[14] 代永娟, 唐荻, 米振莉, 江海涛, 吕建崇. 锰元素对TWIP钢层错能和变形机制的影响[J]. 材料工程, 2009, 0(7): 39-42.
[15] 郭峰, 李杰, 李志, 王俊丽, 古立新, 王瑞. 单轴拉伸下AerMet100钢中稀土夹杂物开裂过程的原位观察[J]. 材料工程, 2008, 0(12): 24-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn