Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (9): 53-59    DOI: 10.11868/j.issn.1001-4381.2015.09.009
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变
王昌盛1,2, 熊江涛2, 李京龙2, 李鹏2, 张赋升2, 杨俊3
1. 西北工业大学 凝固技术国家重点实验室, 西安 710072;
2. 西北工业大学 摩擦焊接陕西省重点实验室, 西安 710072;
3. 中国飞机强度研究所, 西安 710065
Temperature Evolution in Fatigue Test of 2024 Aluminum Alloy Weld Fabricated by Friction Stir Welding
WANG Chang-sheng1,2, XIONG Jiang-tao2, LI Jing-long2, LI Peng2, ZHANG Fu-sheng2, YANG Jun3
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shaanxi Key Laboratory of Friction Welding Technology, Northwestern Polytechnical University, Xi'an 710072, China;
3. Chinese Aircraft Strength Research Institute, Xi'an 710065, China
全文: PDF(4748 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在转速300r/min、焊速60mm/min的参数下制备了8mm厚AA2024-O搅拌摩擦焊(FSW)接头,对母材与FSW接头进行组织观察及力学性能测试,并用红外热像仪记录疲劳过程中试样表面的温度变化。结果表明:FSW接头显示出了高梯度的组织结构不均匀性,具有较好的疲劳性能,前进侧热力影响区是其力学性能薄弱区;母材试样在循环载荷的作用下表面温度变化符合"三个阶段"的明显特征,而FSW接头表面温度在第一阶段与第三阶段的变化趋势与母材相似,在第二阶段呈下降趋势,焊核区与热力影响区晶粒通过不断的循环软化积累了大量的弹塑性应变能,使机械能向热能的转化率降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王昌盛
熊江涛
李京龙
李鹏
张赋升
杨俊
关键词 搅拌摩擦焊红外热像仪疲劳性能弹塑性应变能    
Abstract:The weld joints were fabricated by friction stir welding (FSW) on 8mm thick 2024-O aluminum alloy with a rotating speed of 300r/min and a welding speed of 60mm/min. The microstructure and mechanical properties of parent material and weld joints were investigated. The fatigue tests were conducted on both parent metal and weld joint, during which the surface temperatures were recorded by an infrared thermal imager. The results show that the welds exhibit high gradient inhomogeneity in microstructure, and have good fatigue properties. The thermal mechanical affected zone (TMAZ) in advancing side is the weak area as examined by the tensile tests. The temperature change of the specimen surface of the parent material meets the characteristic of "three stages". Surface temperature variation tendency of the FSW welds is the same with that of the parent material in the first stage and the third stage, but has a downward trend in the second stage. The grains of the weld nugget zone and TMAZ accumulate lots of elastic and plastic strain energy through cyclic softening in the second stage that depress the conversion rate of mechanical energy to thermal energy.
Key wordsfriction stir welding    thermal infrared imager    fatigue property    elastic and plastic strain energy
收稿日期: 2014-05-23      出版日期: 2015-09-26
1:  TG402  
通讯作者: 李京龙(1964-),男,教授,博士生导师,主要从事焊接和热喷涂领域的科研和教学工作,联系地址:陕西省西安市碑林区友谊西路127号西北工业大学公字楼403室(710072),E-mail:lijinglg@nwpu.edu.cn     E-mail: lijinglg@nwpu.edu.cn
引用本文:   
王昌盛, 熊江涛, 李京龙, 李鹏, 张赋升, 杨俊. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43(9): 53-59.
WANG Chang-sheng, XIONG Jiang-tao, LI Jing-long, LI Peng, ZHANG Fu-sheng, YANG Jun. Temperature Evolution in Fatigue Test of 2024 Aluminum Alloy Weld Fabricated by Friction Stir Welding. Journal of Materials Engineering, 2015, 43(9): 53-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.009      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/53
[1] MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R, 2005, 50(1): 1-78.
[2] 董鹏, 孙大千, 李洪梅, 等. 6005A-T6 铝合金搅拌摩擦焊接头组织与力学性能特征[J]. 材料工程, 2012, (4): 27-31. DONG Peng, SUN Da-qian, LI Hong-mei, et al. Microstructural and mechanical characteristics of friction stir welded 6005A-T6 aluminum alloy[J]. Journal of Materials Engineering, 2012, (4): 27-31.
[3] LOMOLINO S, TOVO R, SANTOS J D. On the fatigue behaviour and design curves of friction stir butt-welded Al alloys[J]. International Journal of Fatigue, 2005, 27(3): 305-316.
[4] 赵阳阳, 李敬勇, 李兴学. 搅拌头材质对搅拌摩擦焊温度场的影响[J]. 航空材料学报, 2014, 34(2): 35-39. ZHAO Yang-yang, LI Jing-yong, LI Xing-xue. Influence of stirring tool material on temperature fields of friction stir welding[J]. Journal of Aeronautical Materials, 2014, 34(2): 35-39.
[5] 周才智, 杨新岐, 栾国红. 搅拌摩擦焊接头疲劳行为研究现状[J]. 稀有金属材料与工程, 2006, 35(7): 1172-1176. ZHOU Cai-zhi, YANG Xin-qi, LUAN Guo-hong. Research progress on the fatigue behavior of friction welded joints[J]. Rare Metal Materials and Engineering, 2006, 35(7): 1172-1176.
[6] 杨新岐, 崔雷, 徐效东, 等. 铝合金 6061-T6 搅拌摩擦焊搭接焊缝缺陷及疲劳性能[J]. 航空材料学报, 2013, 33(6): 38-44. YANG Xin-qi, CUI Lei, XU Xiao-dong, et al. Weld defects and fatigue properties of friction stir overlap joints for 6061-T6 aluminum alloy[J]. Journal of Aeronautical Materials, 2013, 33(6): 38-44.
[7] ZHOU C Z, YANG X Q, LUAN G H. Fatigue properties of friction stir welds in Al 5083 alloy[J]. Scripta Materialia, 2005, 53(10): 1187-1191.
[8] 王希靖, 徐成, 张杰, 等. 基于神经网络 BP 算法的 7075-T651 铝合金搅拌摩擦焊焊接接头疲劳寿命预测[J]. 兰州理工大学学报, 2008, 34(3): 12-15. WANG Xi-jing, XU Cheng, ZHANG Jie, et al. Fatigue life prediction of friction-stir welding joints of aluminum alloy 7070-T651 based on BP algorithm of neural network[J]. Journal of Lanzhou University of Technology, 2008, 34(3): 12-15.
[9] ZHANG L, LIU X S, WU S H, et al. Rapid determination of fatigue life based on temperature evolution[J]. International Journal of Fatigue, 2013, 54: 1-6.
[10] LUONG M P. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials, 1998, 28(1): 155-163.
[11] La ROSA G, RISITANO A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22(1): 65-73.
[12] LUONG M P. Infrared thermographic scanning of fatigue in metals[J]. Nuclear Engineering and Design, 1995, 158(2-3): 363-376.
[13] WAGNER D, RANC N, BATHIAS C, et al. Fatigue crack initiation detection by an infrared thermography method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(1): 12-21.
[14] ZHANG H X, WU G H, YAN Z F, et al. An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography[J]. Materials & Design, 2014, 55: 785-791.
[15] 姚磊江, 李斌, 童小燕. 疲劳过程热耗散与表面微观结构演化相关性的试验研究[J]. 西北工业大学学报, 2008, 26(2): 225-228. YAO Lei-jiang, LI Bin, TONG Xiao-yan. Experimental study of the correlation between energy dissipation and surface microstructure evolution during fatigue[J]. Journal of Northwestern Polytechnical University, 2008, 26(2): 225-228.
[16] 德珂. 位错与材料强度[M]. 西安: 西安交通大学出版社, 1988.
[17] 王希靖, 阿荣, 郭瑞杰, 等. LF2铝合金搅拌摩擦焊接头的组织与性能[J]. 中国有色金属学报, 2004, 14(10): 1705-1710. WANG Xi-jing, A Rong, GUO Rui-jie, et al. Microstructures and properties of friction stir welding joints for LF2 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(10): 1705-1710.
[1] 樊俊铃, 郭强, 赵延广, 郭杏林. 基于有限元法和锁相热像法对含缺陷构件的应力分析与疲劳性能评估[J]. 材料工程, 2015, 43(8): 62-71.
[2] 张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
[3] 李继忠, 马正斌, 董春林, 栾国红. 异种铝合金搅拌摩擦焊材料流动行为研究[J]. 材料工程, 2014, 0(6): 1-4.
[4] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[5] 崔俊华, 柯黎明, 刘文龙, 郭正华, 赵刚要, 方平. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014, 0(12): 11-17.
[6] 王凯, 闫志峰, 王文先, 张红霞, 裴飞飞. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, 0(1): 85-89.
[7] 刘杰, 杨景宏, 韩凤武, 宫文彪. 厚板铝合金搅拌摩擦焊匙孔补焊接头组织与性能[J]. 材料工程, 2012, 0(7): 29-33.
[8] 陈影, 付宁宁, 沈长斌, 葛继平. 5083铝合金搅拌摩擦焊搭接接头研究[J]. 材料工程, 2012, 0(6): 24-27.
[9] 刘培生, 马晓明. 高孔率泡沫金属材料疲劳表征模型及其实验研究[J]. 材料工程, 2012, 0(5): 47-53.
[10] 游国强, 张均成, 王向杰, 陈勇. 压铸态AZ91D镁合金搅拌摩擦焊接头微观组织研究[J]. 材料工程, 2012, 0(5): 54-58.
[11] 董鹏, 孙大千, 李洪梅, 宫文彪, 刘杰. 6005A-T6铝合金搅拌摩擦焊接头组织与力学性能特征[J]. 材料工程, 2012, 0(4): 27-31.
[12] 王欣, 高玉魁, 王强, 宋颖刚, 陆峰. 再次喷丸周期对TC18钛合金疲劳寿命的影响[J]. 材料工程, 2012, 0(2): 67-71.
[13] 薛文斌, 陈廷芳, 李永良, 邹志锋, 刘晓龙, 赵衍华. AZ31镁合金搅拌摩擦焊接头微弧氧化表面防护研究[J]. 材料工程, 2012, 0(12): 1-6.
[14] 贺地求, 罗维, 邬红光. 60mm厚度6061-T6铝合金板搅拌摩擦焊接接头微观组织与力学性能[J]. 材料工程, 2011, 0(9): 20-24.
[15] 魏鹏, 邢丽, 徐卫平. 轴肩下压量对搅拌摩擦焊搭接焊缝界面迁移的影响[J]. 材料工程, 2011, 0(6): 43-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn