Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (9): 60-65    DOI: 10.11868/j.issn.1001-4381.2015.09.010
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
玻璃纤维-铝合金正交层板的拉伸性能研究
王亚杰1, 王波1, 张龙1, 马宏毅2
1. 西北工业大学 力学与土木建筑学院, 西安 710129;
2. 北京航空材料研究院, 北京 100095
Tensile Properties of Glass Fiber Reinforced Aluminum Orthorhombic Laminate
WANG Ya-jie1, WANG Bo1, ZHANG Long1, MA Hong-yi2
1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China;
2. Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(1989 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过对两组具有不同铺层次序的玻璃纤维-铝合金正交层板进行拉伸实验,对比研究了铺层次序对材料拉伸力学行为的影响。载荷跌落前两组试件的拉伸力学性能和应力-应变曲线基本一致,说明玻璃纤维-铝合金正交层板的拉伸力学性能与纤维的铺层次序无关。提出了修正后的金属体积分数理论,准确预测了材料的弹性模量、屈服应力及拉伸强度。依据声发射数据和试件损伤失效形貌照片,分析了两组试件的拉伸损伤失效进程。结果表明,铺层次序的不同使得两组材料的损伤进程和破坏模式具有很大差异。最后,利用有限元方法对试件的拉伸力学行为进行了模拟分析,模拟结果与实验值吻合较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王亚杰
王波
张龙
马宏毅
关键词 玻璃纤维-铝合金正交层板拉伸实验损伤演化失效机理有限元模拟    
Abstract:The influence of different layout sequence on the tensile properties was investigated by tensile tests of two group of glass fiber reinforced aluminum orthorhombic laminate with different sequences.The test results show that tensile properties and stress-strain curves of two groups of specimens under loading are almost the same. As a result, the tensile properties have nothing to do with the fiber layup sequence. A modified theory of metal volume fraction is put forward to precisely predict tensile properties including elastic modulus, yield stress and tensile strength. According to acoustic emission(AE) data and pictures of failed specimens, the damage process and failure mechanism of two groups of specimens were analyzed. The results show that the layup sequence has a considerable effect on the damage process and failure mode of the material. Finally, simulation and analysis were carried out on the tensile performance of the specimens using finite element methods. The simulated results are in good agreement with experimental values.
Key wordsglass fiber reinforced aluminum orthorhombic laminate    tensile test    damage evolution    failure mechanism    finite element modelling
收稿日期: 2014-03-24      出版日期: 2015-09-26
1:  TB333  
通讯作者: 王波(1976-),男,博士,副教授,主要从事复合材料力学及结构设计方向的研究,联系地址:陕西省西安市长安区西北工业大学长安校区力学与土木建筑学院(710129),E-mail:b.wang@nwpu.edu.cn     E-mail: b.wang@nwpu.edu.cn
引用本文:   
王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
WANG Ya-jie, WANG Bo, ZHANG Long, MA Hong-yi. Tensile Properties of Glass Fiber Reinforced Aluminum Orthorhombic Laminate. Journal of Materials Engineering, 2015, 43(9): 60-65.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.010      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/60
[1] 蒋陵平.Glare层板疲劳性能研究综述[J].材料导报,2012,26(3):113-118. JIANG Ling-ping. Research of Glare laminate fatigue performance comprehensive evaluation[J].Materials Review, 2012,26(3):113-118.
[2] 程晓琳,李文晓,薛元德.单向玻璃纤维-铝合金层板的几种力学性能研究[J].纤维复合材料,2007,18(3):18-20. CHENG Xiao-lin, LI Wen-xiao, XUE Yuan-de. Research on mechanical properties of unidirectional glass fiber-aluminum alloy laminates[J]. Fiber Composites, 2007, 18(3):18-20.
[3] 梁中全,武文静,朱斌,等.GLARE层板与铝合金板在力学性能上的比较及其应用[J].玻璃纤维,2006,(3):11-13. LIANG Zhong-quan, WU Wen-jing, ZHU Bin, et al. Comparison of GLARE laminate with aluminum alloy and its application[J]. Fiber Glass, 2006,(3):11-13.
[4] SADIGHI M, DARIUSHI S. An experimental study of the fibre orientation and laminate sequencing effects on mechanical properties of Glare[J]. Journal of Aerospace Engineering, 2008, 222(7): 1015-1024.
[5] PARK S Y, CHOI W J, CHOI H S. Effects of surface pre-treatment and void content on GLARE laminate process characteristics[J]. Journal of Materials Processing Technology, 2010, 210(8): 1008-1016.
[6] SINMAZÇELIK T, AVCU E, BORA M Ö, et al. A review: fibre metal laminates, background, bonding types and applied test methods[J]. Materials and Design, 2011, 32(7): 3671-3685.
[7] VOLT A, GUNNINK J W. Fiber Metal Laminates[M]. Netherlands:Kluwer Academic Publishers, 2001.73-75.
[8] 马宏毅,李小刚,李宏运.玻璃纤维-铝合金层板的拉伸和疲劳性能研究[J].材料工程,2006,(7):61-64. MA Hong-yi, LI Xiao-gang, LI Hong-yun. Tension and fatigue properties of glass fiber reinforced aluminum laminates[J]. Journal of Materials Engineering, 2006, (7):61-64.
[9] SOLTANI P, KEIKHOSRAVY M, OSKOUEI R H, et al. Studying the tensile behaviour of GLARE laminates: a finite element modelling approach[J]. Applied Composite Materials, 2011, 18(4): 271-282.
[10] IBARRA-CASTANEDO C, AVDEIDIS N P, GRINZATO E G, et al. Delamination detection and impact damage assessment of GLARE by active thermography[J]. International Journal of Materials and Product Technology, 2011, 41(1-4):5-16.
[11] YAGHOUBI A S, LIU Y X, LIAW B M. Drop-weight impact studies of GLARE 5 fiber-metal laminates[A].PROULX T. Experimental and Applied Mechanics[C].New York: Springer,2011.267-279.
[12] 刘怀喜,马润香,张恒.芳纶纤维/ 环氧树脂复合材料损伤与断裂过程的声发射特性[J].材料导报,2004,18(6):93-95. LIU Huai-xi, MA Run-xiang, ZHANG Heng. The feature of acoustic emission on the damage and fracture in composite of Kevlar-fiber/epoxy[J]. Materials Review, 2004,18(6):93-95.
[13] 王世明,吴中庆,张振军,等.大飞机用Glare层板的性能综合评价研究[J].材料导报,2010, 24(9):88-94. WANG Shi-ming, WU Zhong-qing, ZHANG Zhen-jun, et al. Research of Glare laminates performance comprehensive evaluation applied to large aircraft[J]. Materials Review, 2010, 24(9):88-94.
[14] 潘文革,矫桂琼,王波,等.声发射技术在三维编织C/SiC复合材料拉伸损伤分析中的应用[J].无机材料学报,2004,19(4):871-875. PAN Wen-ge,JIAO Gui-qiong,WANG Bo,et al.Characterizing damage evolution of three-dimensional braid C/SiC composite with AE technology[J].Journal of Inorganic Materials, 2004,19(4):871-875.
[15] 沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.91.
[1] 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013, 0(9): 69-74,78.
[2] 代启锋, 宋仁伯, 关小霞. 超高强铁素体-马氏体双相钢在动态拉伸变形条件下组织和性能研究[J]. 材料工程, 2013, 0(4): 6-11.
[3] 杨金丽, 雷永平, 林健, 肖慧. 银含量对跌落条件下无铅焊点疲劳寿命和失效模式的影响[J]. 材料工程, 2013, 0(12): 74-79.
[4] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[5] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
[6] 樊梦婷, 孙明月, 李殿中. 大型压力机模座热处理过程模拟及工艺优化[J]. 材料工程, 2011, 0(11): 44-50.
[7] 余琨, 蔡志勇, 王晓艳, 史褆, 黎文献. 半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟[J]. 材料工程, 2010, 0(9): 33-39.
[8] 刘远勇, 张晓云, 裴和中, 陆峰, 高健. 7B04铝合金应力腐蚀敏感性研究[J]. 材料工程, 2010, 0(2): 33-36,41.
[9] 朴钟宇, 徐滨士, 王海斗, 濮春欢. 等离子喷涂铁基涂层的接触疲劳失效机理研究[J]. 材料工程, 2009, 0(11): 69-73.
[10] 徐尊平, 程南璞, 陈志谦. 7050铝合金等通道转角挤压的有限元模拟及力学性能[J]. 材料工程, 2008, 0(8): 1-4.
[11] 雷力明, 黄旭, 段锐, 曹春晓. 模具外角对高纯铝60°内角等通道转角挤压变形影响的有限元模拟[J]. 材料工程, 2008, 0(8): 57-60.
[12] 贾波, 李春光, 李海燕. 表面再结晶对定向凝固DZ4合金疲劳行为的影响[J]. 材料工程, 2008, 0(6): 64-67,71.
[13] 方晓强, 李淼泉, 林莺莺. Ti-6Al-4V钛合金等通道转角挤压的有限元模拟[J]. 材料工程, 2007, 0(5): 57-60,65.
[14] 朱亮, 任国松, 龙林, 车洪艳. 双孔微剪切测定铝合金焊接接头的局部本构特性[J]. 材料工程, 2007, 0(10): 18-22.
[15] 覃继宁, 金泉, 张荻, 张国定, 李在哲. 摩擦力在ECAP成形时作用的有限元模拟[J]. 材料工程, 2006, 0(2): 20-22,60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn