Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (9): 66-73    DOI: 10.11868/j.issn.1001-4381.2015.09.011
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响
许天旱1, 冯耀荣2
1. 西安石油大学 材料科学与工程学院, 西安 710065;
2. 中国石油集团 石油管工程技术研究院, 西安 710065
Influence of Mode III Load Component on Fracture Toughness of Casing-drilling Steels with Different Microstructures
XU Tian-han1, FENG Yao-rong2
1. College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
2. CNPC Tubular Goods Research Institute, Xi'an 710065, China
全文: PDF(5671 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用疲劳试验机及SEM研究三种不同显微组织套管钻井钢I/III复合型断裂韧性。结果表明:珠光体-铁素体(PF)钢和铁素体-贝氏体-回火马氏体(FBM)钢的JT均随着III型分量增加先略有增加,然后单调下降,而回火马氏体(TM)钢则呈单调下降趋势,这归因于不同显微组织构成导致不同断口形貌。同时发现,在不同III型载荷分量下,TM钢均具有最大的JT,PF钢均具有最小的JT,FBM钢居中。对于三种钢,JIJ之间均具有线性关系,且材料强度越高,线性系数越小,更容易在剪切载荷下发生断裂。III
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许天旱
冯耀荣
关键词 套管钻井用钢显微组织断裂韧性I/III复合型断口形貌    
Abstract:The mixed-mode I/III fracture toughness of casing-drilling steels with different microstructures was investigated by means of fatigue testers and SEM. The results show that JT of both PF and FBM steels firstly slightly increase with the increase of mode III load component and then decrease continuously, whereas that of TM steel decreases monotonically, which can be attributed to the different fracture surface morphology resulting from the remarkable different microstructure. Meanwhile, it can be found that TM steel possesses the maximum JT and PF steel possesses the minimum JT, respectively, that of FBM is in the middle under different mode III load components. For the three steels, JI and JIII exhibit linear relationship, and the higher the strength, the lower the linear coefficient, the easier to occur fracture under shearing load.
Key wordscasing-drilling steel    microstructure    fracture toughness    mixed-mode I/III    fracture morphology
收稿日期: 2014-03-21      出版日期: 2015-09-26
1:  TG113.25  
  TG115.5+7  
通讯作者: 许天旱(1971-),男,博士,副教授,主要从事材料力学性能与表征的研究,联系地址:陕西省西安市电子二路18号西安石油大学材料科学与工程学院 (710065),E-mail:xutianhan@xsyu.edu.cn     E-mail: xutianhan@xsyu.edu.cn
引用本文:   
许天旱, 冯耀荣. III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响[J]. 材料工程, 2015, 43(9): 66-73.
XU Tian-han, FENG Yao-rong. Influence of Mode III Load Component on Fracture Toughness of Casing-drilling Steels with Different Microstructures. Journal of Materials Engineering, 2015, 43(9): 66-73.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.011      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/66
[1] KUMARA A S, KUMARB B R, DATTAC G, et al. Effect of microstructure and grain size on the fracture toughness of a micro-alloyed steel[J]. Materials Science and Engineering: A, 2010, 527:954-960.
[2] 毕宗岳, 杨军, 牛靖, 等. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5):576-582. BI Zong-yue, YANG Jun, NIU Jing, et al. Fracture toughness of welded joints of X100 high-strength pipeline steel[J]. Acta Metallurgica Sinica, 2013, 49(5): 576-582.
[3] 钟警, 郑子樵, 佘玲娟, 等. 时效制度对AA6156铝合金拉伸性能和断裂韧性的影响[J]. 稀有金属材料与工程, 2013,42(10):2163-2168. ZHONG Jing, ZHENG Zi-qiao, SHE Ling-juan, et al. Effects of aging treatments on tensile properties and fracture toughness of AA6156 aluminum alloy[J]. Rare Metal Materials and Engineering, 2013,42(10):2163-2168.
[4] KOTOW K J, PRITCHARD D M. Riserless drilling with casing: deepwater casing seat optimization[A]. SPE/IADC Drilling Conference, Proceedings[C]. New Orleans, LA, USA: The Society of Petroleum Engineers, 2010. 116-129.
[5] 王绪华. 套管钻井技术发展与应用[J]. 焊管, 2009, 32(10): 33-36. WANG Xu-hua. The development and application of casing drilling technology[J]. Welded Pipe and Tube, 2009, 32(10): 33-36.
[6] BAILEY G, STRICKLER R D, HANNAHS D, et al. Evaluation of a casing drilling connection subjected to fatigue and combined load testing[A]. The 2006 Offshore Technology Conference[C]. Houston, Texas, USA: Sponsor Society Committees of the Offshore Technology Conference, 2006. 1-7.
[7] ZHAO Z X, GAO D L. Casing strength degradation due to torsion residual stress in casing drilling[J]. Journal of Natural Gas Science and Engineering, 2009, 1(4-5): 154-157.
[8] CHANDRA R B, SRINIVAS M, KAMAT S V. The effect of volume fraction of primary α phase on fracture toughness behaviour of Timetal 834 titanium alloy under mode I and mixed mode I/III loading[J]. Materials Science and Engineering: A, 2009, 520(1-2): 29-35.
[9] PARADKAR A G, KAMAT S V. Fracture toughness of Ti-15Al-8Nb alloy under mixed mode I/III loading[J].Materials Science and Engineering: A, 2011, 528(9):3283-3288.
[10] KAMAT S V, SRINIVAS M, RAMA R P. Mixed mode I/III fracture toughness of Armco iron[J]. Acta Materialia, 1998, 46(14): 4985-4992.
[11] XU T H, FENG Y R, SONG S Y, et al. Fatigue crack propagation behaviour of steel with different microstructures[J]. Materials Science and Engineering: A,2012, 551: 110-115.
[12] KUMAR A M, HIRTH J P, HOAGLAND R, et al. A suggested test procedure to measure mixed mode I-III fracture toughness of brittle materials[J]. Journal of Testing and Evaluation, 1994, 22(4): 327-334.
[13] LU M X, ZHENG X L. A new microcomputer-aided system for measuring fatigue crack propagation threshold and selecting testing parameters[J]. Engineering Fracture Mechanics,1993, 45(6): 889-896.
[14] SIOW K S, MANOHARAN M. Mixed mode fracture toughness of lead-tin and tin-silver solder joints with nickel-plated substrate[J]. Materials Science and Engineering: A, 2005, 404(1-2): 244-250.
[15] TUMA J V. Low-temperature tensile properties, notch and fracture toughness of steels for use in nuclear power plant[J]. Nuclear Engineering and Design, 2002, 211(2-3): 105-119.
[16] TORIBIO J, MATOS J C, GONZÁLEZ B. Micro- and macro-approach to the fatigue crack growth in progressively drawn pearlitic steels at different R-ratios[J]. International Journal of Fatigue, 2009, 31(11-12): 2014-2021.
[17] LI L F, YANG W Y, SUN Z Q. Microstructure evolution of a pearlitic steel during hot deformation of undercooled austenite and subsequent annealing[J]. Metallurgical and Materials Transactions A, 2008, 39(3): 624-635.
[18] SALEMIA A, ABDOLLAH Z A. The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel[J]. Materials Characterization, 2008, 59(4): 484-487.
[19] FENG X X, KUMAR A M, HIRTH J P. Mixed mode I/III fracture toughness of 2034 aluminum alloys[J]. Acta Metallurgica et Materialia, 1993, 41(9): 2755-2764.
[20] RAGHAVACHARY S, ROSENFIELD A R, HIRTH J P. Mixed mode I/III fracture toughness of an experimental rotor steel[J]. Metallurgical and Materials Transactions A, 1990, 21(9): 2539-2545.
[21] KAMAT S V, HIRTH J P. Effect of aging on mixed-mode I/III fracture toughness of 2034 aluminum alloys[J]. Acta Materialia, 1996, 44(3): 1047-1054.
[22] CHANDRA R B, SRINIVAS M, KAMAT S V. The effect of mixed mode I/III loading on the fracture toughness of Timetal 834 titanium alloy[J]. Materials Science and Engineering: A, 2008, 476(1-2): 162-168.
[1] 何正林, 高文理, 陆政, 冯朝辉. 热处理对7A85铝合金组织和性能的影响[J]. 材料工程, 2015, 43(8): 13-18.
[2] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[3] 赵勇桃, 董俊慧, 张韶慧, 刘宗昌, 李文学. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91.
[4] 雷玉成, 龚晨诚, 罗雅, 肖波, 朱强. 激励电流对MGH956合金原位合金化TIG焊接头性能的影响[J]. 材料工程, 2015, 43(2): 7-13.
[5] 赵东阳, 刘伟, 沙江波. 放电等离子烧结制备Nb-Si-Ti-Al-Hf-Cr合金的显微组织及力学性能[J]. 材料工程, 2015, 43(10): 20-27.
[6] 冯广杰, 李卓然, 朱洪羽, 徐慨. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1): 1-5.
[7] 邵长斌, 熊江涛, 孙福, 张赋升, 李京龙. TC4钛合金与YG8硬质合金高频感应钎焊组织及性能研究[J]. 材料工程, 2014, 0(9): 26-31.
[8] 张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
[9] 王智慧, 万国力, 贺定勇, 蒋建敏, 崔丽. Fe-Cr-B-C堆焊合金的组织与耐磨性[J]. 材料工程, 2014, 0(9): 57-62.
[10] 周静怡, 赵文侠, 郑真, 曲士昱, 贾新云, 郑运荣. 硼含量对IC10高温合金凝固行为的影响[J]. 材料工程, 2014, 0(8): 90-96.
[11] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
[12] 田俊, 薛顺, 吴铖川, 成国光, 周国治, 王文虎, 盛伟. 弹簧钢热处理前后显微组织对抗腐蚀性能的影响[J]. 材料工程, 2014, 0(4): 18-25.
[13] 王少华, 马志锋, 张显峰, 孙刚, 冯朝辉, 李伟, 陆政. Al-Zn-Mg-Cu-Zr-0.5Er合金型材组织性能研究[J]. 材料工程, 2014, 0(3): 27-33.
[14] 马秀萍, 李超. 铸造过热度和热处理对CoCrMo合金显微组织的影响[J]. 材料工程, 2014, 0(3): 66-70.
[15] 程秀, 胡树兵, 宋武林, 李振. 球墨铸铁的等离子束表面强化研究[J]. 材料工程, 2014, 0(1): 12-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn