Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (9): 74-79    DOI: 10.11868/j.issn.1001-4381.2015.09.012
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
超声相控阵延迟时间的声速校正及在复合材料中的检测
徐娜, 沙正骁, 史亦韦
北京航空材料研究院, 北京 100095
Velocity Correction of Delay Time and Inspection for Composite Materials Using Ultrasonic Phased Array
XU Na, SHA Zheng-xiao, SHI Yi-wei
Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4161 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对复合材料各向异性会导致声速随声波传播方向变化的现象,提出一种沿声波传播方向对相控阵延迟时间进行声速校正的方法。采用时域有限差分数值仿真方法分析相控阵超声波束在复合材料中的传播特性,验证提出的声速校正方法。搭建相控阵超声检测系统,对碳纤维增强树脂基复合材料平板试样进行检测实验,结果可见声速校正后近表面区域信噪比和缺陷检出率明显提高。研究表明所提出的相控阵延迟时间声速校正方法可缓解相控阵超声波束扩散,提高各向异性材料检测能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐娜
沙正骁
史亦韦
关键词 复合材料各向异性超声检测相控阵声速校正    
Abstract:Since velocity of composite material is related to propagation direction, a velocity correction method of delay time calculation was proposed. Propagation characteristics of steering and focusing beams in composite materials were researched using numerical simulation method of finite difference time domain to verify the posed velocity correction method. Ultrasonic phased array inspection system was built and carbon fiber reinforced resin matrix composite plate was detected. The result shows that the signal-to-noise ratio of near surface zone and detection rate of defects are improved obviously using the velocity correction method. The research result indicates that the posed velocity correction method of delay time calculation can solve diffusion of ultrasonic beam and improve inspection ability of anisotropic materials effectively.
Key wordscomposite material    anisotropy    ultrasonic testing    phased array    velocity correction
收稿日期: 2014-11-06      出版日期: 2015-09-26
1:  TB553  
通讯作者: 徐娜(1985—),女,工程师,博士,研究方向:超声无损检测,联系地址:北京市81信箱6分箱(100095),E-mail:bjxuna@163.com     E-mail: bjxuna@163.com
引用本文:   
徐娜, 沙正骁, 史亦韦. 超声相控阵延迟时间的声速校正及在复合材料中的检测[J]. 材料工程, 2015, 43(9): 74-79.
XU Na, SHA Zheng-xiao, SHI Yi-wei. Velocity Correction of Delay Time and Inspection for Composite Materials Using Ultrasonic Phased Array. Journal of Materials Engineering, 2015, 43(9): 74-79.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.012      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/74
[1] 周晓芹, 段友社, 薛向晨, 等. 飞机复材构件制造装备应用现状[J]. 航空制造技术, 2013, (17): 53-57. ZHOU Xiao-qin, DUAN You-she, XUE Xiang-chen, et al. Application of manufacturing equipment for aircraft composites component[J]. Aeronautical Manufacturing Technology, 2013, (17): 53-57.
[2] AMARO A M, REIS P N B, De MOURA M, et al. Damage detection on laminated composite materials using several NDT techniques[J]. Insight, 2012, 54(1): 14-20.
[3] KESSLER S S, SPEARING S M, SOUTIS C. Damage detection in composite materials using lamb wave methods[J]. Smart Materials and Structures, 2002, 11(2): 269-278.
[4] AYMERICH F, MEILI S. Ultrasonic evaluation of matrix damage in impacted composite laminates[J]. Composites Part B: Engineering, 2000, 31(1): 1-6.
[5] 施克仁, 郭寓岷. 相控阵超声成像检测[M]. 北京: 高等教育出版社, 2010.15-16.
[6] DRINKWATER B W, WILCOX P D. Ultrasonic arrays for non-destructive evaluation: a review[J]. NDT & E International, 2006, 39(7): 525-541.
[7] HABERMEHL J, LAMARRE A. Ultrasonic phased array tools for composite inspection during maintenance and manufacturing[A]. 17th World Conference on Nondestructive Testing[C]. Shanghai: Chinese Society for Non-destructive Testing, 2008. 116-121.
[8] MAURER A, HAASE W, HENRICH R, et al. Automated inspection of complex composite components in the production cycle[A]. 17th World Conference on Nondestructive Testing[C]. Shanghai: Chinese Society for Non-destructive Testing, 2008. 111-116.
[9] 李怀富, 李业书, 吕贵平, 等. 超声相控阵技术在复合材料检测上的应用[J]. 玻璃钢/复合材料, 2010, (2): 86-88. LI Huai-fu, LI Ye-shu, LV Gui-ping, et al. Ultrasonic phased array technology in the detection of composite materials application[J]. Fiber Reinforced Plastics/Composites, 2010, (2): 86-88.
[10] 张海燕. 层状各向异性媒介中超声波传播特性研究[D]. 上海: 同济大学, 2002. ZHANG Hai-yan. Study on the propagation characteristics of ultrasonic waves in layered anisotropic media[D]. Shanghai: Tongji University, 2002.
[11] 罗斯. 固体中的超声波[M]. 北京: 科学出版社, 2004. 213-214.
[12] 鞠洪涛. 手动超声相控阵检测成像算法研究[D]. 哈尔滨:哈尔滨工业大学, 2008. JU Hong-tao. Research on the manual ultrasonic phased array inspection imaging algorithm[D]. Harbin: Harbin Institute of Technology, 2008.
[13] 徐娜, 李洋, 周正干, 等. FDTD方法的改进及在超声波声场计算中的应用[J]. 北京航空航天大学学报, 2013, 39(1): 78-82. XU Na, LI Yang, ZHOU Zheng-gan, et al. Improvement of finite difference time domain method and its application to calculation of ultrasonic sound fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 78-82.
[14] XU N, ZHOU Z G. Numerical simulation and experiment for inspection of corner shaped components using ultrasonic phased array[J]. NDT & E International, 2014, 64(4):28-34.
[15] SATYANARAYAN L, MOHAN K V, KRISHNAMURTHY C V, et al. Finite difference time domain simulation of ultrasonic phased array sector scan for imaging cracks in large pipes, elbows, and tee sections[J]. Research in Nondestructive Evaluation, 2008, 19(2): 61-86.
[16] SATYANARAYAN L, SRIDHAR C, KRISHNAMURTHY C V, et al. Simulation of ultrasonic phased array technique for imaging and sizing of defects using longitudinal waves[J]. International Journal of Pressure Vessels and Piping, 2007, 84(12): 716-729.
[17] ZHOU B, GREENHALGH S. On the computation of elastic wave group velocities for a general anisotropic medium[J]. Journal of Geophysics and Engineering, 2004, 1(3): 205-215.
[18] 周正干, 高翌飞, 吕炎, 等. 碳化硅颗粒增强铝基复合材料弹性常数测量[J]. 北京航空航天大学学报, 2009, 35(2): 162-165. ZHOU Zheng-gan, GAO Yi-fei, LV Yan, et al. Elastic constant matrix measurement of SiCp reinforced aluminum metal matrix composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 162-165.
[1] 王欢, 李嘉禄, 樊威. 纤维体积分数对三维编织复合材料T型梁模态性能的影响[J]. 材料工程, 2015, 43(9): 80-86.
[2] 李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤. CNTs/Al5083复合材料力学性能及增强机制[J]. 材料工程, 2015, 43(8): 1-6.
[3] 陈阁谷, 关莹, 亓宪明, 彭锋, 姚春丽, 孙润仓. 聚合物/层状硅酸盐纳米复合材料阻燃性研究进展[J]. 材料工程, 2015, 43(8): 104-112.
[4] 景红霞, 李巧玲, 叶云, 裴王军. 羰基铁/钛酸钡复合材料的制备及吸波性能[J]. 材料工程, 2015, 43(7): 38-42.
[5] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[6] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[7] 倪楠楠, 温月芳, 贺德龙, 益小苏, 郭妙才, 许亚洪. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6): 90-101.
[8] 张勇, 谢卫红, 刘宏伟, 张峰. 聚氨酯蜂窝纸板动力学性能及其本构模型[J]. 材料工程, 2015, 43(5): 27-32.
[9] 李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015, 43(5): 44-49.
[10] 冯宇, 何宇廷, 安涛, 崔荣洪, 邵青, 范超华. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43(5): 81-88.
[11] 董慧民, 安学锋, 益小苏, 闫丽, 苏正涛, 包建文. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5): 89-100.
[12] 石晓朋, 李曙林, 常飞, 卞栋梁, 尹俊杰. 复合材料加筋壁板低速冲击响应与冲击能量关系[J]. 材料工程, 2015, 43(4): 53-58.
[13] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[14] 张响, 陈招科, 熊翔. C/C-SiC复合材料表面ZrB2基陶瓷涂层的制备及高温烧结机理[J]. 材料工程, 2015, 43(3): 1-6.
[15] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn