Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (9): 74-79    DOI: 10.11868/j.issn.1001-4381.2015.09.012
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
超声相控阵延迟时间的声速校正及在复合材料中的检测
徐娜, 沙正骁, 史亦韦
北京航空材料研究院, 北京 100095
Velocity Correction of Delay Time and Inspection for Composite Materials Using Ultrasonic Phased Array
XU Na, SHA Zheng-xiao, SHI Yi-wei
Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4161 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对复合材料各向异性会导致声速随声波传播方向变化的现象,提出一种沿声波传播方向对相控阵延迟时间进行声速校正的方法。采用时域有限差分数值仿真方法分析相控阵超声波束在复合材料中的传播特性,验证提出的声速校正方法。搭建相控阵超声检测系统,对碳纤维增强树脂基复合材料平板试样进行检测实验,结果可见声速校正后近表面区域信噪比和缺陷检出率明显提高。研究表明所提出的相控阵延迟时间声速校正方法可缓解相控阵超声波束扩散,提高各向异性材料检测能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐娜
沙正骁
史亦韦
关键词 复合材料各向异性超声检测相控阵声速校正    
Abstract:Since velocity of composite material is related to propagation direction, a velocity correction method of delay time calculation was proposed. Propagation characteristics of steering and focusing beams in composite materials were researched using numerical simulation method of finite difference time domain to verify the posed velocity correction method. Ultrasonic phased array inspection system was built and carbon fiber reinforced resin matrix composite plate was detected. The result shows that the signal-to-noise ratio of near surface zone and detection rate of defects are improved obviously using the velocity correction method. The research result indicates that the posed velocity correction method of delay time calculation can solve diffusion of ultrasonic beam and improve inspection ability of anisotropic materials effectively.
Key wordscomposite material    anisotropy    ultrasonic testing    phased array    velocity correction
收稿日期: 2014-11-06      出版日期: 2015-09-26
中图分类号:  TB553  
通讯作者: 徐娜(1985—),女,工程师,博士,研究方向:超声无损检测,联系地址:北京市81信箱6分箱(100095),E-mail:bjxuna@163.com     E-mail: bjxuna@163.com
引用本文:   
徐娜, 沙正骁, 史亦韦. 超声相控阵延迟时间的声速校正及在复合材料中的检测[J]. 材料工程, 2015, 43(9): 74-79.
XU Na, SHA Zheng-xiao, SHI Yi-wei. Velocity Correction of Delay Time and Inspection for Composite Materials Using Ultrasonic Phased Array. Journal of Materials Engineering, 2015, 43(9): 74-79.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.012      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/74
[1] 周晓芹, 段友社, 薛向晨, 等. 飞机复材构件制造装备应用现状[J]. 航空制造技术, 2013, (17): 53-57. ZHOU Xiao-qin, DUAN You-she, XUE Xiang-chen, et al. Application of manufacturing equipment for aircraft composites component[J]. Aeronautical Manufacturing Technology, 2013, (17): 53-57.
[2] AMARO A M, REIS P N B, De MOURA M, et al. Damage detection on laminated composite materials using several NDT techniques[J]. Insight, 2012, 54(1): 14-20.
[3] KESSLER S S, SPEARING S M, SOUTIS C. Damage detection in composite materials using lamb wave methods[J]. Smart Materials and Structures, 2002, 11(2): 269-278.
[4] AYMERICH F, MEILI S. Ultrasonic evaluation of matrix damage in impacted composite laminates[J]. Composites Part B: Engineering, 2000, 31(1): 1-6.
[5] 施克仁, 郭寓岷. 相控阵超声成像检测[M]. 北京: 高等教育出版社, 2010.15-16.
[6] DRINKWATER B W, WILCOX P D. Ultrasonic arrays for non-destructive evaluation: a review[J]. NDT & E International, 2006, 39(7): 525-541.
[7] HABERMEHL J, LAMARRE A. Ultrasonic phased array tools for composite inspection during maintenance and manufacturing[A]. 17th World Conference on Nondestructive Testing[C]. Shanghai: Chinese Society for Non-destructive Testing, 2008. 116-121.
[8] MAURER A, HAASE W, HENRICH R, et al. Automated inspection of complex composite components in the production cycle[A]. 17th World Conference on Nondestructive Testing[C]. Shanghai: Chinese Society for Non-destructive Testing, 2008. 111-116.
[9] 李怀富, 李业书, 吕贵平, 等. 超声相控阵技术在复合材料检测上的应用[J]. 玻璃钢/复合材料, 2010, (2): 86-88. LI Huai-fu, LI Ye-shu, LV Gui-ping, et al. Ultrasonic phased array technology in the detection of composite materials application[J]. Fiber Reinforced Plastics/Composites, 2010, (2): 86-88.
[10] 张海燕. 层状各向异性媒介中超声波传播特性研究[D]. 上海: 同济大学, 2002. ZHANG Hai-yan. Study on the propagation characteristics of ultrasonic waves in layered anisotropic media[D]. Shanghai: Tongji University, 2002.
[11] 罗斯. 固体中的超声波[M]. 北京: 科学出版社, 2004. 213-214.
[12] 鞠洪涛. 手动超声相控阵检测成像算法研究[D]. 哈尔滨:哈尔滨工业大学, 2008. JU Hong-tao. Research on the manual ultrasonic phased array inspection imaging algorithm[D]. Harbin: Harbin Institute of Technology, 2008.
[13] 徐娜, 李洋, 周正干, 等. FDTD方法的改进及在超声波声场计算中的应用[J]. 北京航空航天大学学报, 2013, 39(1): 78-82. XU Na, LI Yang, ZHOU Zheng-gan, et al. Improvement of finite difference time domain method and its application to calculation of ultrasonic sound fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 78-82.
[14] XU N, ZHOU Z G. Numerical simulation and experiment for inspection of corner shaped components using ultrasonic phased array[J]. NDT & E International, 2014, 64(4):28-34.
[15] SATYANARAYAN L, MOHAN K V, KRISHNAMURTHY C V, et al. Finite difference time domain simulation of ultrasonic phased array sector scan for imaging cracks in large pipes, elbows, and tee sections[J]. Research in Nondestructive Evaluation, 2008, 19(2): 61-86.
[16] SATYANARAYAN L, SRIDHAR C, KRISHNAMURTHY C V, et al. Simulation of ultrasonic phased array technique for imaging and sizing of defects using longitudinal waves[J]. International Journal of Pressure Vessels and Piping, 2007, 84(12): 716-729.
[17] ZHOU B, GREENHALGH S. On the computation of elastic wave group velocities for a general anisotropic medium[J]. Journal of Geophysics and Engineering, 2004, 1(3): 205-215.
[18] 周正干, 高翌飞, 吕炎, 等. 碳化硅颗粒增强铝基复合材料弹性常数测量[J]. 北京航空航天大学学报, 2009, 35(2): 162-165. ZHOU Zheng-gan, GAO Yi-fei, LV Yan, et al. Elastic constant matrix measurement of SiCp reinforced aluminum metal matrix composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 162-165.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[12] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[13] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[14] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[15] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn