Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (9): 87-93    DOI: 10.11868/j.issn.1001-4381.2015.09.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
多孔钛材料的动态力学响应研究
王婧1, 任会兰1, 郝莉2, 宁建国1
1. 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081;
2. 北京建筑大学 理学院, 北京 100044
Dynamic Mechanical Response of Cellular Titanium Material
WANG Jing1, REN Hui-lan1, HAO Li2, NING Jian-guo1
1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
2. School of Sciences, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
全文: PDF(1819 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过一级轻气炮加载,对孔洞具有一定规律的多孔钛材料进行了平板撞击实验及数值研究。基于锰铜压阻计测量到的实验波形,获得了冲击波在多孔钛材料中传播的衰减效应以及冲击波波速和波后粒子速度的 D-u 冲击绝热关系。依照实验情况在非线性动力学有限元软件中建立了数值模型,并根据计算结果得到了冲击波的压力-时间波形以及冲击绝热关系,拟合出了多孔钛材料的多项式形式Grüneisen状态方程。通过对压缩度 μ 进行泰勒展开,结合冲击波基本关系式及冲击绝热关系,从理论上得到了多项式形式Grüneisen状态方程系数的具体表达式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王婧
任会兰
郝莉
宁建国
关键词 多孔钛材料动态力学性能Grüneisen状态方程    
Abstract:Shock properties of cellular titanium with regular pores were investigated by one-stage gas gun plate impact technique. With the experimental curves caught by the manganin gauge, the attenuation effect of shock wave propagating through the cellular titanium samples and the adiabatic impact D-u relationship between shock wave velocity and the practical velocity after shock wave are obtained. According to the experiments, a numerical model is built in nonlinear dynamic finite element software. The pressure-time curves of shock wave and the adiabatic relation are obtained from the numerical results, and the polynomial Grüneisen equation of state of cellular titanium is given by numerical simulation. Moreover, with Taylor expansion of the squeezing degree μ, the coefficient of the polynomial Grüneisen equation is deduced by using shock wave relations and the adiabatic relation.
Key wordscellular titanium material    dynamic mechanical property    Grü    neisen equation of state
收稿日期: 2014-06-13      出版日期: 2015-09-26
1:  TB34  
基金资助: 
通讯作者: 郝莉(1963-),女,博士,教授,现主要从事爆炸力学研究,联系地址:北京建筑大学大兴校区永源路15号(102612),E-mail:haoli_haoli@126.com     E-mail: haoli_haoli@126.com
引用本文:   
王婧, 任会兰, 郝莉, 宁建国. 多孔钛材料的动态力学响应研究[J]. 材料工程, 2015, 43(9): 87-93.
WANG Jing, REN Hui-lan, HAO Li, NING Jian-guo. Dynamic Mechanical Response of Cellular Titanium Material. Journal of Materials Engineering, 2015, 43(9): 87-93.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.014      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/87
[1] BOADE R R. Dynamic compression of porous tugsten[J]. Journal of Applied Physics, 1969, 40(9): 3781-3785.
[2] BONNAN S, HEREIL P L. Experimental characterization of quasi static and shock wave behavior of porous aluminum[J]. Journal of Applied Physics, 2008, 83(11):5741-5749.
[3] Da SILVA M G, RAMESH K T. The rate-dependent deformations of porous pure iron[J]. International Journal of Plasticity, 1997, 13(6-7): 587-610.
[4] 李斌潮,赵桂平, 卢天健. 高孔隙率闭孔泡沫铝的低应变率压缩行为[J]. 力学学报,2011,43(1):122-135. LI Bin-chao, ZHAO Gui-ping, LU Tian-jian. Low strain rate compressive behavior of high porosity closed-cell aluminum foams[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(1):122-135.
[5] 王永刚,胡时胜,王礼立. 爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究[J]. 爆炸与冲击, 2003, 23(6): 516-522. WANG Yong-gang, HU Shi-sheng, WANG Li-li. Shock attenuation in aluminum foams under explosion loading[J]. Explosion and Shock Waves, 2003,23(6):516-522.
[6] 经福谦. 实验物态方程导引[M]. 北京: 科学出版社, 1999.
[7] 王礼立. 应力波基础[M]. 北京:国防工业出版社,2010.
[8] 刘海燕, 宋卫东, 宁建国. 不同晶粒度钨合金动态力学性能研究[J]. 材料工程, 2007,(6): 3-6. LIU Hai-yan, SONG Wei-dong, NING Jian-guo. Dynamic behavior of tungsten alloys with different grain sizes[J].Journal of Materials Engineering, 2007,(6): 3-6.
[9] 姜芳, 陈涛, 宁建国. 钢筋混凝土在冲击载荷下的动态力学性能[J]. 材料工程, 2009, (3): 45-48. JIANG Fang, CHEN Tao, NING Jian-guo. Dynamic mechanical properties of reinforced concrete subjected to shock loading[J]. Journal of Materials Engineering, 2009, (3): 45-48.
[10] FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies[J]. International Journal of Impact Engineering, 2004, 30(7): 725-775.
[11] 赵士达, 沈乐天, 赵双录. 用于材料动态性能实验的单极轻气炮[J]. 兵工学报,1985,(4):49-55. ZHAO Shi-da, SHEN Le-tian, ZHAO Shuang-lu. A single-stage light gas gun for impact studies[J].Acta Armamentarii, 1985,(4):49-55.
[12] 李伯琼. 多孔钛的孔隙特征和力学性能的研究[D]. 大连:大连交通大学, 2005. LI Bo-qiong. The investigation of pore characteristic and mechanical property of porous Ti[D].Dalian: Dalian Jiaotong University,2005.
[13] 张晓伟,王彦莉,陈利,等. 多孔金属介质的力学性能及其参数依赖性研究[J]. 材料工程, 2014, (2): 55-59. ZHANG Xiao-wei, WANG Yan-li, CHEN Li,et al. Mechanical properties of porous metal materials and their dependence on geometric parameters[J]. Journal of Materials Engineering, 2014,(2): 55-59.
[14] 刘培生,夏凤金,罗军. 多孔材料模型分析[J]. 材料工程, 2009, (7): 83-87. LIU Pei-sheng, XIA Feng-jin, LUO Jun. Analyses of the classical model for porous materials[J]. Journal of Materials Engineering, 2009, (7): 83-87.
[15] IDE T,TANE M, IKEDA T. Compressive properties of lotus-type porous stainless steel[J]. Journal of Materials Research, 2006, 21(1): 185-193.
[16] STEINBERG D J. Equation of State and Strength Properties of Selected Materials[M]. Livermore: Lawrence Livermore National Laboratory, 2003.
[1] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[2] 刘海燕, 宋卫东, 栗建桥. 钨合金动态力学性能的三维数值模拟研究[J]. 材料工程, 2012, 0(6): 71-75.
[3] 郝敏, 黄艳华, 苏正涛, 王景鹤. 苯基硅橡胶的动态力学性能研究[J]. 材料工程, 2012, 0(10): 35-38,53.
[4] 江盛玲, 谷晓昱, 张志远. 聚苯硫醚/羟基改性多壁碳纳米管复合材料动态力学行为研究[J]. 材料工程, 2011, 0(6): 77-80.
[5] 姜芳, 陈涛, 宁建国. 钢筋混凝土在冲击载荷下的动态力学性能[J]. 材料工程, 2009, 0(3): 45-48,53.
[6] 姚俊臣, 文丽芳, 韩寿波, 马岳. 高应变率下阻尼铝合金的动态力学性能研究[J]. 材料工程, 2006, 0(6): 46-48,67.
[7] 何颖, 李春忠, 程起林, 丛德滋, 干路平. 硅生胶结构对补强硅橡胶的力学及加工性能的影响[J]. 材料工程, 2005, 0(7): 43-46.
[8] 梁基照. 玻璃微珠含量及粒径对填充聚丙烯复合材料动态力学性能的影响[J]. 材料工程, 1999, 0(4): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn