Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (10): 14-19    DOI: 10.11868/j.issn.1001-4381.2015.10.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
固化温度对亚麻纤维及其增强复合材料力学性能的影响
马豪, 李岩, 王迪, 陆超
同济大学 航空航天与力学学院, 上海 200092
Effect of Curing Temperature on Mechanical Properties of Flax Fiber and Their Reinforced Composites
MA Hao, LI Yan, WANG Di, LU Chao
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
全文: PDF(3616 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究热压成型过程中,不同固化温度对亚麻纤维及其增强复合材料力学性能的影响。结果表明:亚麻纤维在120,140℃和180℃分别处理2h后单纤维拉伸性能发生不同程度的下降。环氧树脂E-51在120,140℃和180℃下固化2h后拉伸性能未发生明显变化。基于环氧树脂的单向亚麻纱线增强复合材料分别在120℃和140℃固化成型时,拉伸强度和冲击强度变化不大。但当固化温度达到180℃时,由于亚麻纤维在高温环境下损伤较为严重,其增强复合材料的拉伸强度和冲击强度均发生明显的下降。然而复合材料的拉伸模量随着成型温度的升高有一定幅度的提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马豪
李岩
王迪
陆超
关键词 亚麻纤维复合材料固化温度力学性能    
Abstract:The effect of different curing temperatures on the mechanical properties of flax fiber and their reinforced composites was studied during hot pressing forming process. The results show that the tensile strength of single flax fiber declines in varying degrees when flax fibers are treated for 2h at 120, 140℃ and 180℃, respectively, the tensile strength of epoxy resin E-51 has a little change after treated at the same conditions. Tensile and impact strength change slightly, when unidirectional flax yarn reinforced epoxy resin composites is cured under 120℃ and 140℃. However, when the curing temperature increases to 180℃, owing to the serious damage of flax fiber at high temperature, the tensile and impact strength of the flax fiber reinforced composites then decrease obviously. Meanwhile, as the curing temperature increases, the tensile modulus of composites improves in some degree.
Key wordsflax fiber    composite    curing temperature    mechanical property
收稿日期: 2014-04-21      出版日期: 2015-10-17
1:  TB33  
通讯作者: 李岩(1972-),女,教授,主要从事天然纤维增强复合材料方面的研究,联系地址:上海市彰武路100号 (200092),liyan@tongji.edu.cn     E-mail: liyan@tongji.edu.cn
引用本文:   
马豪, 李岩, 王迪, 陆超. 固化温度对亚麻纤维及其增强复合材料力学性能的影响[J]. 材料工程, 2015, 43(10): 14-19.
MA Hao, LI Yan, WANG Di, LU Chao. Effect of Curing Temperature on Mechanical Properties of Flax Fiber and Their Reinforced Composites. Journal of Materials Engineering, 2015, 43(10): 14-19.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.003      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/14
[1] LI Y, MAI Y W, YE L. Sisal fibre and its composites: a review of recent developments [J]. Composite Science and Technology, 2000, 60(11): 2037-2055.
[2] 刘艳峰,包建文,李艳亮,等. 单向苎麻纤维增强酚醛树脂复合材料性能的研究[J]. 航空材料学报,2011, 31(6): 68-72. LIU Y F, BAO J W, LI Y L, et al. Unidirectional ramie fiber reinforced composite based on phenolic resin [J]. Journal of Aeronautical Materials, 2011, 31(6): 68-72.
[3] 陈旭,尹鹏,咸贵军,等. 苎麻纤维增强酚醛树脂基复合材料的湿热性能研究[J]. 航空材料学报,2013,33(2): 58-65. CHEN X, YIN P, XIAN G J, et al. Hygrothermal properties of ramie fiber/phenolic resin composite under different hygrothermal conditions [J]. Journal of Aeronautical Materials, 2013, 33(2): 58-65.
[4] 李岩,罗业.天然纤维增强复合材料力学性能及其应用[J]. 固体力学学报,2010, 31(6):36-38. LI Y, LUO Y. Mechanical properties and applications of natural fiber reinforced composites [J]. Chinese Journal of Solid Mechanics, 2010, 31(6): 36-38.
[5] SILVA F A, CHAWLA N, FILHO R D T. Tensile behaviour of high performance natural (sisal) fibers [J]. Composites Science and Technology, 2008, 68(15-16): 3438-3443.
[6] 田永,何莉萍,王路琳,等.汽车制造用苎麻纤维增强聚丙烯的力学性能的研究[J].材料工程,2008,(1): 21-24. TIAN Y, HE L P, WANG L L, et a1. Study of mechanical properties of ramie fiber reinforced polypropylene compounds for automobile industry[J]. Journal of Materials Engineering, 2008,(1): 21-24.
[7] LI Y, LUO Y, HAN S. Multi-scale structures of natural fibres and their applications in making automobile parts [J]. Journal of Biobased Materials and Bioenergy, 2010, 4(2): 164-171.
[8] BALEY C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase [J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(7): 939-948.
[9] YANG W D, LI Y. Sound absorption performance of natural fibers and their composites [J]. Science China Technological Sciences, 2012, 55(8): 2278-2283.
[10] ZHENG Z Y, LI Y, YANG W D. Absorption properties of natural fiber-reinforced sandwich structures based on the fabric structures [J]. Journal of Reinforced Plastics and Composites, 2013, 32(20): 1561-1568.
[11] LIU K, TAKAGI H, OSUGI R, et al. Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fiber composites [J]. Composites Science and Technology, 2012, 72(5): 633-639.
[12] 刘艳峰,包建文,李艳亮,等. 固化温度对苎麻纤维增强复合材料性能的影响[J]. 航空材料学报,2012,32(2):49-53. LIU Y F, BAO J W, LI Y L, et al. Effect of cure temperature on mechanical properties of composite reinforced by ramie fiber[J]. Journal of Aeronautical Materials, 2012, 32(2):49-53.
[13] BISANDA E T N, ANSELL M P. Properties of sisal-CNSL composites [J]. Journal of Materials Science, 1992, 27(6): 1690-1700.
[14] SRIDHAR M K, BASAVARAJJAPPA G, KASTURI S S, et al. Thermal stability of jute fibres [J]. Indian Journal of Fibre and Textile Research, 1982,(7): 87-91.
[15] GONZALEZ C, MEYERS G E. Thermal-degradation of wood fillers at the melt-processing temperatures of wood-plastic composites: Effects on wood mechanical-properties and production of volatiles [J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 1993, 23(1-2): 67-85.
[16] MUNAWAR S S, UNEMURA K, KAWAI S. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles [J]. Journal of Wood Science, 2007, 53(2): 108-113.
[17] CHAND N, HASHMI S A R. Mechanical properties of sisal fibre at elevated temperatures [J]. Journal of Materials Science, 1993, 28(24): 6724-6728.
[18] VAN D E VELDE K, KIEKENS P. Thermoplastic pultrusion of natural fiber reinforced composites [J]. Composite Structures, 2001, 54(2-3): 355-360.
[19] 李贤军,刘元,高建民,等.高温热处理木材的FTIR和XRD分析[J]. 北京林业大学学报, 2009, 31(增刊1): 104-107. LI X J, LIU Y, GAO J M, et al. Characteristics of FTIR and XRD for wood with high-temperature heating treatment [J]. Journal of Beijing Forestry University, 2009, 31(Suppl 1): 104-107.
[20] 龙超,郝丙业,刘文斌,等.影响热处理木材力学性能的主要工艺因素[J]. 木材工业,2008, 22(1): 43-45. LONG C, HAO B Y, LIU W B, et al. Effect of heat treatment on mechanical properties of wood [J]. China Wood Industry, 2008, 22(1): 43-45.
[21] SHAH D, SCHUBEL PJ, CLIFFORD M J, et al. The tensile behavior of off-axis loaded plant fiber composites: an insight on the non-linear stress-strain response [J]. Polymer Composites, 2012, 33(9): 1494-1504.
[22] MA H, LI Y, WANG D. Investigations of fiber twist on the mechanical properties of sisal fiber yarns and their composites [J]. Journal of Reinforced Plastics and Composites, 2014, 33(7): 687-696.
[1] 徐娜, 沙正骁, 史亦韦. 超声相控阵延迟时间的声速校正及在复合材料中的检测[J]. 材料工程, 2015, 43(9): 74-79.
[2] 王欢, 李嘉禄, 樊威. 纤维体积分数对三维编织复合材料T型梁模态性能的影响[J]. 材料工程, 2015, 43(9): 80-86.
[3] 王婧, 任会兰, 郝莉, 宁建国. 多孔钛材料的动态力学响应研究[J]. 材料工程, 2015, 43(9): 87-93.
[4] 李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤. CNTs/Al5083复合材料力学性能及增强机制[J]. 材料工程, 2015, 43(8): 1-6.
[5] 陈阁谷, 关莹, 亓宪明, 彭锋, 姚春丽, 孙润仓. 聚合物/层状硅酸盐纳米复合材料阻燃性研究进展[J]. 材料工程, 2015, 43(8): 104-112.
[6] 景红霞, 李巧玲, 叶云, 裴王军. 羰基铁/钛酸钡复合材料的制备及吸波性能[J]. 材料工程, 2015, 43(7): 38-42.
[7] 林翠, 赵晴, 文庆杰. TC1钛合金的腐蚀加工及其对基体性能影响[J]. 材料工程, 2015, 43(7): 48-55.
[8] 李龙, 祝志超, 张心金, 刘会云. 利用控轧控冷技术开发热轧不锈钢复合板的实验研究[J]. 材料工程, 2015, 43(7): 62-67.
[9] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[10] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[11] 倪楠楠, 温月芳, 贺德龙, 益小苏, 郭妙才, 许亚洪. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6): 90-101.
[12] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[13] 张勇, 谢卫红, 刘宏伟, 张峰. 聚氨酯蜂窝纸板动力学性能及其本构模型[J]. 材料工程, 2015, 43(5): 27-32.
[14] 李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015, 43(5): 44-49.
[15] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn