Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 20-27    DOI: 10.11868/j.issn.1001-4381.2015.10.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
放电等离子烧结制备Nb-Si-Ti-Al-Hf-Cr合金的显微组织及力学性能
赵东阳, 刘伟, 沙江波()
北京航空航天大学 材料科学与工程学院, 北京 100191
Microstructure and Properties of Nb-Si-Ti-Al-Hf-Cr Alloys Fabricated by Spark Plasma Sintering
Dong-yang ZHAO, Wei LIU, Jiang-bo SHA()
School of Material Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(3429 KB)   HTML ( 69 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以预合金化的粉末尺寸D50为3.3μm的NbSS固溶体相细粉末,粉末尺寸D50分别为22.1μm和23.5μm的Nb5Si3和Cr2Nb化合物粉末为原料,采用放电等离子烧结技术制备NbSS/Nb5Si3两相合金和NbSS/Nb5Si3/Cr2Nb三相合金,研究显微组织形貌、室温和高温力学性能及高温氧化性能。结果表明:两相合金的显微组织由NbSS基体和呈均匀岛状分布的Nb5Si3组成,三相合金中NbSS有相互连接成基体的趋势,而Nb5Si3和Cr2Nb相也以块状散布在NbSS中。NbSS/Nb5Si3两相合金和NbSS/Nb5Si3/Cr2Nb三相合金的室温断裂韧性值KQ分别达到15.1MPa·m1/2和11.3MPa·m1/2,室温下合金中NbSS相以韧窝型断裂为主,对Nb-Si基合金的室温断裂韧性有利,而Nb5Si3和Cr2Nb相为脆性断裂。1250℃时NbSS/Nb5Si3/Cr2Nb合金的压缩强度高于NbSS/Nb5Si3合金,但当温度上升到1350℃时两者强度出现反转。Cr2Nb相对合金高温抗氧化性能有利,1250℃下静态氧化100h时NbSS/Nb5Si3合金的氧化增重为233mg/cm2,大于NbSS/Nb5Si3/Cr2Nb合金的175mg/cm2

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵东阳
刘伟
沙江波
关键词 Nb-Si基合金放电等离子烧结显微组织力学性能氧化行为    
Abstract

Pre-alloyed NbSS solid-solution fine powder with a D50 size of 3.3μm, pre-alloyed Nb5Si3 and Cr2Nb compound powders with D50 size respectively of 22.1μm and 23.5μm were used as raw materials, and two-phase NbSS/Nb5Si3 alloy and three-phase NbSS/Nb5Si3/Cr2Nb alloy were fabricated by Spark Plasma Sintering (SPS). The microstructure, mechanical properties and oxidation behavior at room and/or high temperatures were investigated. The results show that the microstructure of the NbSS/Nb5Si3 alloy consists of the NbSS matrix and the uniformly distributed Nb5Si3 islands. As for the NbSS/Nb5Si3/Cr2Nb alloy, the NbSS phase tends to connect to be the matrix, while the Nb5Si3 and Cr2Nb blocks scatter in the NbSS phase. Fracture toughness KQ at room temperature of the two-phase and three-phase alloys are 15.0MPa·m1/2and 11.3 MPa·m1/2, respectively. The NbSS phase is found to fail in a dimple mode under bending, which is greatly beneficial to KQ of the bulk Nb-Si based alloys; while the Nb5Si3 and Cr2Nb phases fracture in a brittle mode. At 1250℃, the compressive strength of the NbSS/Nb5Si3/Cr2Nb alloy is higher than that of the NbSS/Nb5Si3 alloy, whereas it is contrary at 1350℃. The Cr2Nb phase plays a positive role in oxidation resistance at high temperature. Air exposed at 1250℃ for 100h, the oxidation mass gain of NbSS/Nb5Si3 alloy is 233mg/cm2, greater than 175mg/cm2 of the NbSS/Nb5Si3/Cr2Nb alloy.

Key wordsNb-Si based alloy    spark plasma sintering    microstructure    mechanical property    oxidation behavior
收稿日期: 2014-11-15      出版日期: 2015-10-17
基金资助:国家自然科学基金项目(51171005)
通讯作者: 沙江波     E-mail: jbsha@buaa.edu.cn
作者简介: 沙江波(1965-),男,教授,从事高温结构材料研究工作,联系地址:北京市海淀区学院路37号,北京航空航天大学材料科学与工程学院(100191),E-mail: jbsha@buaa.edu.cn
引用本文:   
赵东阳, 刘伟, 沙江波. 放电等离子烧结制备Nb-Si-Ti-Al-Hf-Cr合金的显微组织及力学性能[J]. 材料工程, 2015, 43(10): 20-27.
Dong-yang ZHAO, Wei LIU, Jiang-bo SHA. Microstructure and Properties of Nb-Si-Ti-Al-Hf-Cr Alloys Fabricated by Spark Plasma Sintering. Journal of Materials Engineering, 2015, 43(10): 20-27.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.004      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/20
Alloy Phase Atom fraction/%
Nb Si Ti Al Hf Cr
Nb-16Si-22Ti-2Al-2Hf-17Cr NbSS 54.61 1.42 29.81 1.57 1.92 10.68
Nb5Si3 38.70 38.64 16.91 0.74 3.02 2.17
Cr2Nb 21.56 7.29 12.14 0.78 4.86 53.38
Table 1  预合金化NbSS,Nb5Si3和Cr2Nb相粉末的成分
Fig.1  预合金化粉末形貌(1)及其粒度分布(2)
(a)NbSS;(b)Nb5Si3;(c)Cr2Nb
Fig.2  预合金化粉末的X射线衍射图谱
Fig.3  块体合金的X射线衍射图谱
Fig.4  块体合金显微组织
(a)NbSS/Nb5Si3两相合金;(b)NbSS/Nb5Si3/Cr2Nb三相合金
Fig.5  NbSS/Nb5Si3两相合金中NbSS相晶粒形貌的EBSD图像
(a)及尺寸分布特征(b)
Sample HV KQ/(MPa·m1/2)
NbSS/Nb5Si3 699±18 15.1±0.81
NbSS/Nb5Si3/Cr2Nb 860±21 11.3±1.52
Table 2  块体合金的维氏硬度HV及室温断裂韧性KQ(MPa·m1/2)
Fig.6  三点弯曲实验断口形貌
(a),(b)NbSS/Nb5Si3两相合金;(c),(d)NbSS/Nb5Si3/Cr2Nb三相合金
Fig.7  高温压缩真应力-真应变曲线
(a)1250℃;(b)1350℃
Fig.8  块体合金1250℃/100h的氧化动力学曲线
1 BEWLAY P B, JACKSON R M, ZHAO J C, et a1 Ultrahigh temperature Nb-silicide-based composites[J]. MRS Bulletin, 2003, 28 (9): 646- 653.
2 JACKSON R M, BEWLAY P B, ROWE G R, et a1 High-temperature refractory metal-intermetallic composites[J]. Journal of Metals, 1996, 48 (1): 39- 44.
3 沙江波 Nb-Si基超高温合金研究进展[J]. 航空制造技术, 2010, (14): 58- 61.
3 SHA Jiang-bo Research progress of Nb-Si ultra high temperature alloy[J]. Aeronautical Manufacturing Technology, 2010, (14): 58- 61.
4 BEWLAY P B, JACKSON R M, SUBRAMANIAN R P, et al A review of very-high temperature Nb-silicide-based composites[J]. Metallurgical and Materials Transactions A, 2003, 34 (10): 2043- 2052.
5 张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料[M]. 北京: 国防工业出版社, 2001.21-23.
5 ZHANG Yong-gang, HAN Ya-fang, CHEN Guo-liang, et al. Intermetallic Compound Structure Material[M]. Beijing: National Defense Industry Press, 2001.21-23.
6 黄光宏, 申造宇, 牟仁德, 等 Nb/Nb5Si3 微叠层复合材料制备与其组织结构[J]. 航空材料学报, 2014, 34 (6): 47- 53.
6 HUANG Guang-hong, SHEN Zao-yu, MU Ren-de, et al Preparation and microstructure of Nb/Nb5Si3 microlaminated composites[J]. Journal of Aeronautical Materials, 2014, 34 (6): 47- 53.
7 DAVIDSON L D, MAZIASZ J P, JONES W J Dislocation structures in a deformed Nb-Cr-Ti solid solution alloy[J]. Metallurgical and Materials Transactions A, 2001, 32 (4): 1023- 1027.
8 LIU W, SHA J B Effect of Nb and Nb5Si3 powder size on microstructure and fracture behavior of an Nb-16Si alloy fabricated by spark plasma sintering[J]. Metallurgical and Materials Transactions A, 2014, 45 (10): 4316- 4323.
9 康永旺, 曲士昱, 宋尽霞, 等 V, Al对Nb-Si系超高温结构材料抗氧化性能的影响[J]. 航空材料学报, 2008, 28 (5): 6- 10.
9 KANG Yong-wang, QU Shi-yu, SONG Jin-xia, et al Effect of V and Al on oxidation resistance of Nb-Si based ultra high temperature structural materials[J]. Journal of Aeronautical Materials, 2008, 28 (5): 6- 10.
10 MENDIRATTA G M, LEWANDOWKSI J J, DIMIDUK M D Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloy[J]. Metallurgical Transactions A, 1991, 22 (7): 1573- 1583.
11 BEWLAY P B, JACKSON R M, LIPSITT H A The balance of mechanical and environmental properties of a multi-element niobium-niobium silicide-based in situ composite[J]. Metallurgical and Materials Transactions A, 1996, 27 (12): 3801- 3808.
12 CHAN S K, DAVIDSION L D Effects of Ti addition on cleavage fracture in Nb-Cr-Ti solid-solution alloys[J]. Metallurgical and Materials Transactions A, 1999, 30 (4): 925- 939.
13 GENG J, TSAKIROPOULOS P, SHAO G S A study of the effect of Hf and Sn addition on the microstructure of NbSS/Nb5Si3 based in situ composites[J]. Intermetallics, 2007, 15 (1): 69- 76.
14 SHA J B, HIRAI H, UENO H, et al Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures[J]. Metallurgical and Materials Transactions A, 2003, 34 (1): 85- 94.
15 GUAN P, GUO X P, DING X, et al Directionally solidified microstructure of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy[J]. Acta Metallurgies Sinica, 2004, 17 (4): 450- 454.
16 MURAKAMI T, SASAKI S, ICHIKAWA K, et al Oxidation resistance of powder compacts of the Nb-Si-Cr system and Nb3Si5Al2 matrix compacts prepared by spark plasma sintering[J]. Intermetallics, 2001, 9 (7): 629- 635.
17 MURAYAMA Y, HANADA S High temperature strength fracture toughness and oxidation resistance of Nb-Si-Al-Ti multiphase alloys[J]. Science and Technology of Advanced Materials, 2002, 3 (2): 145- 156.
18 JACKSON R M, BEWLAY P B, ROWE G R, et a1 High-temperature refractory metal-intermetallic composites[J]. Journal of Metals, 1996, 48 (1): 39- 44.
19 DAVIDSON L D, CHAN K S The effect of microstructure on the fracture resistance of Nb-Cr-Ti in situ composites[J]. Scripta Materialia, 1998, 38 (7): 1155- 1161.
20 MENDIRATTA G M, DIMIDUK M D Phase relations and transformation kinetics in the high Nb region of the Nb-Si system[J]. Scripta Metallurgica et Materialia, 1991, 25 (1): 237- 242.
21 KAJUCH J, RIGNEY D J, LEWANDOWSKI J J Processing and properties of Nb5Si3 and tough Nb5Si3/Nb laminates[J]. Materials Science and Engineering: A, 1992, 155 (1-2): 59- 65.
22 YU J, ZHANG K F Tensile properties of multiphase refractory Nb-16Si-2Fe in situ composite[J]. Scripta Materialia, 2008, 59 (7): 714- 717.
23 MA L M, YUAN S N, CUI R J, et al Interactions between Nb-silicide based alloy and yttria mould during directional solidification[J]. International Journal of Refractory Metals and Hard Materials, 2012, 30 (1): 96- 101.
24 杨春艳, 陈颖, 沙江波 Cr对Nb-16Si-22Ti-2Al-2Hf 合金显微组织与高低温力学性能的影响[J]. 航空学报, 2010, (9): 1892- 1899.
24 YANG Chun-yan, CHEN Ying, SHA Jiang-bo The influence of Cr for high and low temperature mechanical properties of Nb-16Si-22Ti-2Al-2Hf alloys[J]. Journal of aviation, 2010, (9): 1892- 1899.
25 BEWLAY P B, JACKSON R M, LIPSITT A H The balance of mechanical and environmental properties of a multi-element niobium-niobium silicide-based in situ composite[J]. Metallurgical and Materials Transactions A, 1996, 27 (12): 3801- 3808.
26 陈颖. 热加工工艺对Nb-Si-Ti-Al-Cr-Hf系超高温合金组织与性能的影响[D]. 北京: 北京航空航天大学, 2008.
26 CHEN Ying. The influence of hot working technology on the microstructure and properties of Nb-Si-Ti-Al-Cr-Hf high temperature alloy[D]. Beijing: Beihang University, 2008.
27 SHA J, YANG C, LIU J Toughening and strengthening behavior of an Nb-8Si-20Ti-6Hf alloy with addition of Cr[J]. Scripta Materialia, 2010, 62 (11): 859- 862.
28 ZHANG P, GUO X P A comparative study of two kinds of Y and Al modified silicide coatings on an Nb-Ti-Si based alloy prepared by pack cementation technique[J]. Corrosion Science, 2011, 53 (12): 4291- 4299.
[1] 常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[4] 王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
[5] 程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
[6] 岑耀东, 郭曜珲, 马潇, 陈林, 包喜荣. U75V重轨钢弯曲疲劳裂纹扩展行为[J]. 材料工程, 2023, 51(1): 122-129.
[7] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[8] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[9] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[10] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[11] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[12] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[13] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[14] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[15] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn