Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 28-34    DOI: 10.11868/j.issn.1001-4381.2015.10.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
变形终止温度对GCr15轴承钢显微组织的影响
李振兴1, 李长生1,*(), 马永强2, 李涛2, 张建1
1 东北大学 轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2 抚顺特殊钢股份有限公司, 辽宁 抚顺 113001
Effect of Final Deformation Temperature on Microstructure of GCr15 Bearing Steel
Zhen-xing LI1, Zhang-sheng LI1,*(), Yong-qiang MA2, Tao LI2, Jian ZHANG1
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 Fushun Special Steel Co., Ltd., Fushun 113001, Liaoning, China
全文: PDF(3625 KB)   HTML ( 32 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用MMS300热模拟试验机对GCr15轴承钢的热变形工艺进行模拟,研究变形终止温度对其显微组织的影响。结果表明,变形终止温度在770~870℃内变化时,其显微组织均为片层状珠光体+沿晶界分布的先共析碳化物,并且先共析碳化物周围存在铁素体薄膜。随着变形终止温度的升高,晶粒尺寸和珠光体团的尺寸均增加,珠光体的片层间距略微减小,硬度增加。通过回归分析获得维氏硬度与片层间距倒数的拟合方程HV=38.3S-1+92.7。变形终止温度在810~870℃内升高时,碳化物的网状程度增加。与810℃相比,变形终止温度为770℃和790℃时,碳化物的网状程度较严重。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李振兴
李长生
马永强
李涛
张建
关键词 GCr15轴承钢变形终止温度珠光体网状碳化物片层间距    
Abstract

The hot deformation process of GCr15 bearing steel was simulated by the MMS300 thermal mechanical simulator. The effect of final deformation temperature on microstructure was investigated. The results show that, within the range of 770-870℃,the microstructure of GCr15 bearing steel consists of lamellar pearlite plus proeutectoid carbide which is distributed along the grain boundary and surrounded by ferrite thin film. With the increase of the final deformation temperature,the grain size and pearlite colony size both increase,the mean interlamellar spacing of pearlite decreases slightly and the hardness increases. By means of regression analysis,the fitted curve of Vickers hardness vs the reciprocal of mean interlamellar spacing is given by HV=38.3S-1+92.7. The degree of carbide network increases when the final deformation temperature increases within the range of 810-870℃. Compared with 810℃,the degree of carbide network is more serious at the final deformation temperature of 770℃ and 790℃.

Key wordsGCr15 bearing steel    final deformation temperature    pearlite    carbide network    lamellar spacing
收稿日期: 2014-04-11      出版日期: 2015-10-17
基金资助:国家高新技术研究发展计划(863计划)项目(2012AA03A503);国家自然科学基金项目(51174057,51274062);高等学校博士学科点专项科研基金项目(20130042110040)
通讯作者: 李长生     E-mail: lics@ral.neu.edu.cn
作者简介: 李长生(1964-),男,教授,博导,主要从事高品质钢轧制技术研究工作,联系地址:辽宁省沈阳市和平区文化路3巷11号,东北大学105信箱,轧制技术及连轧自动化国家重点实验室(110819),E-mail: lics@ral.neu.edu.cn
引用本文:   
李振兴, 李长生, 马永强, 李涛, 张建. 变形终止温度对GCr15轴承钢显微组织的影响[J]. 材料工程, 2015, 43(10): 28-34.
Zhen-xing LI, Zhang-sheng LI, Yong-qiang MA, Tao LI, Jian ZHANG. Effect of Final Deformation Temperature on Microstructure of GCr15 Bearing Steel. Journal of Materials Engineering, 2015, 43(10): 28-34.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.005      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/28
C Si Mn Cr P S Cu Al Fe
1.000 0.280 0.340 1.570 0.011 0.003 0.100 0.029 Bal
Table 1  GCr15实验钢化学成分(质量分数/%)
Fig.1  热变形实验工艺图
Fig.2  不同变形终止温度下GCr15轴承钢的显微组织
(a)770℃;(b)790℃;(c)810℃;(d)830℃;(e)850℃;(f)870℃
Fig.3  变形终止温度为790℃时试样的透射照片
(a)和图(a)箭头处先共析碳化物的衍射斑(b)
Fig.4  不同变形终止温度下试样的晶粒尺寸和珠光体团尺寸
Fig.5  不同变形终止温度下珠光体的平均 片层间距以及硬度值
Fig.6  硬度与片层间距倒数的拟合曲线
Fig.7  不同变形终止温度下的试样深腐蚀后得到的金相图片
(a)770℃;(b)790℃;(c)810℃;(d)830℃;(e)850℃;(f)870℃
Fig.8  GCr15轴承钢不同温度下各平衡相的质量分数
1 ZARETSKY E V Rolling bearing steels-a technical and historical perspective[J]. Materials Science and Technology, 2012, 28 (1): 58- 69.
2 廖舒纶, 张立文, 岳重祥, 等 GCr15热变形行为与流变应力模型的研究[J]. 材料工程, 2008, (4): 8- 10.
2 LIAO Shu-lun, ZHANG Li-wen, YUE Chong-xiang, et al Research on thermal deformation behaviour and flow stress of GCr15 steel[J]. Journal of Materials Engineering, 2008, (4): 8- 10.
3 李永德, 徐娜, 郭卫民, 等 高压气相热充氢对SUJ2轴承钢超高周疲劳行为的影响[J]. 材料工程, 2014, (2): 87- 93.
3 LI Yong-de, XU Na, GUO Wei-min, et al The influence of high pressure thermal hydrogen charging on very high cycle fatigue behavior of SUJ2 bearing steel[J]. Journal of Materials Engineering, 2014, (2): 87- 93.
4 BHADESHIA H K D H Steels for bearings[J]. Progress in Materials Science, 2012, 57 (2): 268- 435.
5 GEMBALOVA P, BORUTA J, GRYCZ E, et al Hot forming parameters research of bearing steel[J]. Archives of Civil and Mechanical Engineering, 2007, 7 (2): 21- 28.
6 SUN Y K, WU D Effect of ultra-fast cooling on microstructure of large section bars of bearing steel[J]. Journal of Iron and Steel Research, International, 2009, 16 (5): 61- 65.
7 李胜利, 徐建忠, 王国栋, 等 大断面轴承钢控轧控冷工艺的模拟与分析[J]. 东北大学学报: 自然科学版, 2006, 27 (6): 658- 661.
7 LI Sheng-li, XU Jian-zhong, WANG Guo-dong, et al Simulation and analysis of large cross-section bearing steel's TMCP process[J]. Journal of Northeastern University: Natural Science, 2006, 27 (6): 658- 661.
8 岳重祥, 张立文, 阮金华 Φ70-80 轴承钢热轧棒材轧制过程的孔型设计及三维模拟[J]. 材料工程, 2011, (2): 60- 64.
8 YUE Chong-xiang, ZHANG Li-wen, RUAN Jin-hua Pass design and 3D simulation for the rolling process of Φ70-80 bearing steel rod[J]. Journal of Materials Engineering, 2011, (2): 60- 64.
9 李胜利, 王国栋, 刘相华, 等 大断面轴承钢控温轧制工艺与实验研究[J]. 钢铁, 2007, 42 (3): 41- 43.
9 LI Sheng-li, WANG Guo-dong, LIU Xiang-hua, et al Technics and experimental research on controlled rolling for large-cross-section bearing steel parts[J]. Iron and Steel, 2007, 42 (3): 41- 43.
10 ZHANG M X, KELLY P M The morphology and formation mechanism of pearlite in steels[J]. Materials Characterization, 2009, 60 (6): 545- 554.
11 MARDER A R, BRAMFITT B L Effect of continuous cooling on the morphology and kinetics of pearlite[J]. Metallurgical Transactions A, 1975, 6 (11): 2009- 2014.
12 FERNÁNDEZ-VICENTE A, CARSÍ M, PENÂLBA F, et al Toughness dependence on the microstructural parameters for an ultrahigh carbon steel (1[J]. 3 wt. % C)[J]. Materials Science and Engineering: A, 2002, 335 (1-2): 175- 185.
13 ELWAZRI A M, WANJARA P, YUE S The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel[J]. Materials Science and Engineering: A, 2005, 404 (1-2): 91- 98.
14 YAHYAOUI H, SIDHOM H, BRAHAM C, et al Effect of interlamellar spacing on the elastoplastic behavior of C70 pearlitic steel: experimental results and self-consistent modeling[J]. Materials & Design, 2014, 55 (3): 888- 897.
15 CABALLERO F G, GARCÍA DE ANDRÉS C, CAPDEVILA C Characterization and morphological analysis of pearlite in a eutectoid steel[J]. Materials Characterization, 2000, 45 (2): 111- 116.
16 PARK K T, CHO S K, CHOI J K Pearlite morphology in hypereutectoid steel[J]. Scripta Materialia, 1997, 37 (5): 661- 666.
17 孙本荣, 朱荣林, 赵佩祥, 等 热变形对动态CCT曲线的影响[J]. 钢铁, 1987, 22 (5): 16- 22.
17 SUN Ben-rong, ZHU Rong-lin, ZHAO Pei-xiang, et al Effect of hot deformation on dynamic CCT curves[J]. Iron and Steel, 1987, 22 (5): 16- 22.
18 RIDLEY N A review of the data on the interlamellar spacing of pearlite[J]. Metallurgical Transaction A, 1984, 15 (6): 1019- 1036.
19 RAY K K, MONDAL D The effect of interlamellar spacing on strength of pearlite in annealed eutectoid and hypoeutectoid plain carbon steels[J]. Acta Metallurgical et Materialia, 1991, 39 (10): 2201- 2208.
20 WU K M, BHADESHIA H K D H. Extremely fine pearlite by continuous cooling transformation[J]. 2012, 67(1): 53-56.
21 KRAL M V, SPANOS G Crystallography of grain boundary cementite dendrites[J]. Acta Materialia, 2003, 51 (2): 301- 311.
22 赵宪明, 孙艳坤, 吴迪 GCr15轴承钢高温变形后控冷工艺的研究[J]. 材料科学与工艺, 2010, 18 (2): 216- 220.
22 ZHAO Xian-ming, SUN Yan-kun, WU Di Controlled cooling of GCr15 bearing steel after high temperature[J]. Materials Science & Technology, 2010, 18 (2): 216- 220.
[1] 杨泽南, 李赛, 于俊杰, 谢强, 王祯, 张明达, 董浩凯, 张强, 杨志刚. 合金元素配分对珠光体相变热动力学及其奥氏体化影响的研究进展[J]. 材料工程, 2020, 48(7): 61-71.
[2] 陈广兴, 张勇伟, 许晓嫦, 徐琛, 李红英, 赵明纯. 循环热处理对1Cr-0.5Mo钢碳化物演变和冲击韧性的影响[J]. 材料工程, 2020, 48(12): 135-140.
[3] 王立军, 蔡庆伍, 余伟, 武会宾, 雷爱娣. 低碳低合金钢的连续冷却相变组织特征及其形成机制[J]. 材料工程, 2010, 0(8): 29-33.
[4] 谢守明, 高宏波, 赵杰, 王来, 韩双起. FES-DP系统及Z参数法评定Cr5Mo钢的剩余寿命[J]. 材料工程, 2004, 0(4): 43-45.
[5] 闫海, 钟培道, 陈瑛, 陶春虎. 凸轮的表面裂纹分析[J]. 材料工程, 1994, 0(6): 32-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn