Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (10): 35-41    DOI: 10.11868/j.issn.1001-4381.2015.10.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
轴重对轮轨材料滚动磨损与损伤行为影响
丁昊昊, 王文健, 郭俊, 刘启跃, 朱旻昊
西南交通大学 牵引动力国家重点实验室摩擦学研究所, 成都 610031
Effect of Axle-load on Rolling Wear and Damage Behaviors of Wheel and Rail Materials
DING Hao-hao, WANG Wen-jian, GUO Jun, LIU Qi-yue, ZHU Min-hao
Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(4102 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用WR-1轮轨滚动磨损实验机研究不同轴重下轮轨材料滚动磨损与损伤性能。结果表明:轮轨试样磨损率均随轴重增加呈现线性增加趋势,且钢轨试样磨损率大于车轮试样磨损率。轮轨试样硬化率均随时间呈现先增加后趋于稳定的变化趋势,轮轨试样塑变层厚度和硬化率均随轴重增加而增大,且车轮试样硬化率大于钢轨。车轮试样和钢轨试样表面损伤形貌不同,车轮试样表面表现为垂直于滚动方向的疲劳裂纹,钢轨试样表面表现为裂纹和块状剥落,轮轨试样表面损伤均随轴重增加而更加严重;车轮试样表面裂纹疲劳断裂和钢轨试样表面块状剥落形成磨屑,成分主要为Fe2O3和马氏体,随轴重增加,磨屑尺寸呈现增大趋势,但成分与含量无明显变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁昊昊
王文健
郭俊
刘启跃
朱旻昊
关键词 轴重轮轨材料磨损损伤疲劳裂纹    
Abstract:The rolling wear and damage characteristics of wheel and rail materials under different axle-loads were investigated using a WR-1 wheel/rail rolling wear testing apparatus. The results show that both of the wear rates of wheel and rail materials rise linearly with the increase of axle-load, and the wear rate of rail specimen is larger than wheel. The hardening rates of wheel and rail specimens firstly increase obviously and then keep stable along with the test time. With the increase of axle-load, the depth of plastic deformation layer and the hardness rate of wheel and rail specimens increase. The hardness rate of wheel is larger than rail. The surface damage morphology of wheel specimen is different from rail. For the surface damage morphology of wheel specimen consists of fatigue cracks perpendicular to rolling direction, however, the rail surface damage morphology is dominated by cracks and spalls. The surface damage of the wheel and rail specimens gets increasingly severe along with the in crease of axle-load. Debris, which comes from fatigue cracks fracture of wheel specimen and spalling of rail, is composed of Fe2O3 and martensite. With the increase of axle-load, the size of debris increases, the components and their content, however, have no obvious change.
Key wordsaxle-load    wheel/rail material    wear    damage    fatigue crack
收稿日期: 2014-04-15      出版日期: 2015-10-17
中图分类号:  TH117.3  
通讯作者: 王文健(1980-),男,博士,副研究员,主要从事轮轨关系与摩擦学研究,联系地址:四川省成都市二环路北一段111号西南交通大学摩擦学研究所(610031),wwj527@163.com     E-mail: wwj527@163.com
引用本文:   
丁昊昊, 王文健, 郭俊, 刘启跃, 朱旻昊. 轴重对轮轨材料滚动磨损与损伤行为影响[J]. 材料工程, 2015, 43(10): 35-41.
DING Hao-hao, WANG Wen-jian, GUO Jun, LIU Qi-yue, ZHU Min-hao. Effect of Axle-load on Rolling Wear and Damage Behaviors of Wheel and Rail Materials. Journal of Materials Engineering, 2015, 43(10): 35-41.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.006      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/35
[1] CORREA N,OYARZABAL O,VADILLO E G,et al.Rail corrugation development in high speed lines[J].Wear,2011,271:2438-2447.
[2] DIRKS B,ENBIOM R.Prediction model for wheel profile wear and rolling contact fatigue[J].Wear,2011,271:210-217.
[3] REN L,XIE G,IWNICKI S D.Properties of wheel/rail longitudinal creep force due to sinusoidal short pitch corrugation on railway rails[J].Wear,2012,284-285:73-81.
[4] 温泽峰,金学松,刘兴奇.两种型面轮轨滚动接触蠕滑率和摩擦功[J].摩擦学学报,2001,21(4):288-292. WEN Z F,JIN X S,LIU X Q.Creepages and friction work of wheelset and track with two type profiles in rolling contact[J].Tribology,2001,21(4):288-292.
[5] WANG W J,ZHONG W,LIU Q Y,et al. Investigation on rolling wear and fatigue properties of railway rail [J]. Proceedings of the Institution of Mechanical Engineers,Part J: Journal of Engineering Tribology, 2009,223(7):1033-1039.
[6] 邓建辉,刘启跃,王飞龙,等.车速对钢轨接触疲劳损伤的影响及高速线路钢轨选用[J].钢铁钒钛,2006,27(3):48-54. DENG J H,LIU Q Y,WANG F L,et al.Influence of train velocity on rail contact fatigue damage and how to select rail for high-speed[J].Iron Steel Vanadium Titanium,2006,27(3):48-54.
[7] 王步康,董光能,刘永红,等.钢轨短波长波浪形磨损的安定性分析[J].摩擦学学报,2004,24(1):70-73. WANG B K,DONG G N,LIU Y H,et al.Shakedown analysis of rolling contact surface with short-wavelength corrugation [J].Tribology,2004,24(1):70-73.
[8] DONZELLA G,FACCOLI M,GHIDINI A,et al.The competitive role of wear and RCF in a rail steel [J].Engineering Fracture Mechanics,2005,72:287-308.
[9] 郭俊,赵鑫,金学松,等.全制动工况下轮轨热-机耦合效应的分析[J].摩擦学学报,2006,26(5):489-493. GUO J,ZHAO X,JIN X S,et al.Analysis of wheel/rail thermal-mechanical coupling effects in sliding case[J].Tribology,2006,26(5):489-493.
[10] 丁昊昊,付志凯,郭火明,等.三种钢轨材料与车轮匹配时滚动磨损与损伤行为[J].摩擦学学报,2014,34(3):233-239. DING H H,FU Z K,GUO H M,et al.Rolling wear and damage behaviors between three kinds of rail materials and wheel material[J].Tribology,2014,34(3):233-239.
[11] 宋川,刘建华,彭金方,等.接触应力对车轴钢旋转弯曲微动疲劳寿命的影响[J].材料工程,2014,(2):34-38. SONG C,LIU J H,PENG J F,et al.Effect of contact stress on rotating bending fretting fatigue life of railway axle steel [J].Journal of Materials Engineering,2014,(2):34-38.
[12] GRASSIE S,NILSSION P,BJURSTROM K, et al.Alleviation of rolling contact fatigue on Sweden's heavey haul rialway[J].Wear,2002,253:42-53.
[13] CLAYTON P.Predicting the wear of rails on curves from laboratory data [J].Wear,1995,181-183:11-19.
[14] 王文健,郭俊,刘启跃.接触应力对轮轨材料滚动摩擦磨损性能影响[J].摩擦学学报,2011,31(4):352-356. WANG W J,GUO J,LIU Q Y.Effect of contact stress on rolling friction and wear behavior of wheel-rail materials [J].Tribology,2011,31(4):352-356.
[15] 钟雯.钢轨的损伤机理研究[D].成都:西南交通大学,2011. ZHONG W. Experimental investigation of rail damnification mechanism[D].Chengdu:Southwest Jiaotong University,2011.
[16] 谭晓明,张丹峰,陈跃良,等.基于疲劳裂纹萌生机理的铝合金疲劳寿命可靠性评估方法[J].航空材料学报,2014,34(2):84-89. TAN Xiao-ming,ZHANG Dan-feng,CHEN Yue-liang,et al.Probabilistic method to predict fatigue life based on crack initiating micro-mechanism of aluminum alloy [J].Journal of Aeronautical Materials,2014,34(2):84-89.
[1] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[2] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[3] 韩永明, 韩俊玲, 辛龙, 刘廷光, 陆永浩, 庄子哲雄. 晶界工程处理对Inconel 690TT合金微动磨损行为的影响[J]. 材料工程, 2020, 48(10): 123-132.
[4] 李新星, 王红侠, 施剑峰, 韩伯群. TC11钛合金表面保护性摩擦氧化层的形成及作用[J]. 材料工程, 2020, 48(10): 141-147.
[5] 董慧民, 闫丽, 安学锋, 钱黄海, 苏正涛, 益小苏. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1): 41-47.
[6] 李春华, 王晗, 郝海. AZ91及AZ91-Y合金复合干摩擦性能的对比[J]. 材料工程, 2020, 48(1): 108-114.
[7] 刘凯, 崔荣洪, 侯波, 何宇廷, 牛欢. PVD薄膜传感器裂纹检测概率测定与分析[J]. 材料工程, 2019, 47(9): 160-166.
[8] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[9] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[10] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[11] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[12] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[13] 张先炼, 何晓聪, 邢保英, 曾凯. TA1纯钛与1420铝锂合金异质薄板自冲铆接微动疲劳特性[J]. 材料工程, 2019, 47(4): 143-151.
[14] 张欣悦, 张德坤, 陈凯, 徐寒冬. 聚醚醚酮与髌骨软骨间的生物摩擦学特性[J]. 材料工程, 2019, 47(2): 129-137.
[15] 黄凯, 蒋日鹏, 李晓谦, 李瑞卿, 张立华. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47(12): 78-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn