Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 35-41    DOI: 10.11868/j.issn.1001-4381.2015.10.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
轴重对轮轨材料滚动磨损与损伤行为影响
丁昊昊, 王文健(), 郭俊, 刘启跃, 朱旻昊
西南交通大学 牵引动力国家重点实验室摩擦学研究所, 成都 610031
Effect of Axle-load on Rolling Wear and Damage Behaviors of Wheel and Rail Materials
Hao-hao DING, Wen-jian WANG(), Jun GUO, Qi-yue LIU, Min-hao ZHU
Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(4102 KB)   HTML ( 79 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用WR-1轮轨滚动磨损实验机研究不同轴重下轮轨材料滚动磨损与损伤性能。结果表明:轮轨试样磨损率均随轴重增加呈现线性增加趋势,且钢轨试样磨损率大于车轮试样磨损率。轮轨试样硬化率均随时间呈现先增加后趋于稳定的变化趋势,轮轨试样塑变层厚度和硬化率均随轴重增加而增大,且车轮试样硬化率大于钢轨。车轮试样和钢轨试样表面损伤形貌不同,车轮试样表面表现为垂直于滚动方向的疲劳裂纹,钢轨试样表面表现为裂纹和块状剥落,轮轨试样表面损伤均随轴重增加而更加严重;车轮试样表面裂纹疲劳断裂和钢轨试样表面块状剥落形成磨屑,成分主要为Fe2O3和马氏体,随轴重增加,磨屑尺寸呈现增大趋势,但成分与含量无明显变化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁昊昊
王文健
郭俊
刘启跃
朱旻昊
关键词 轴重轮轨材料磨损损伤疲劳裂纹    
Abstract

The rolling wear and damage characteristics of wheel and rail materials under different axle-loads were investigated using a WR-1 wheel/rail rolling wear testing apparatus. The results show that both of the wear rates of wheel and rail materials rise linearly with the increase of axle-load, and the wear rate of rail specimen is larger than wheel. The hardening rates of wheel and rail specimens firstly increase obviously and then keep stable along with the test time. With the increase of axle-load, the depth of plastic deformation layer and the hardness rate of wheel and rail specimens increase. The hardness rate of wheel is larger than rail. The surface damage morphology of wheel specimen is different from rail. For the surface damage morphology of wheel specimen consists of fatigue cracks perpendicular to rolling direction, however, the rail surface damage morphology is dominated by cracks and spalls. The surface damage of the wheel and rail specimens gets increasingly severe along with the in crease of axle-load. Debris, which comes from fatigue cracks fracture of wheel specimen and spalling of rail, is composed of Fe2O3 and martensite. With the increase of axle-load, the size of debris increases, the components and their content, however, have no obvious change.

Key wordsaxle-load    wheel/rail material    wear    damage    fatigue crack
收稿日期: 2014-04-15      出版日期: 2015-10-17
基金资助:国家自然科学基金(51475393,51174282,U1134202);教育部创新团队科学基金(IRT1178)
通讯作者: 王文健     E-mail: wwj527@163.com
作者简介: 王文健(1980-),男,博士,副研究员,主要从事轮轨关系与摩擦学研究,联系地址:四川省成都市二环路北一段111号西南交通大学摩擦学研究所(610031),E-mail: wwj527@163.com
引用本文:   
丁昊昊, 王文健, 郭俊, 刘启跃, 朱旻昊. 轴重对轮轨材料滚动磨损与损伤行为影响[J]. 材料工程, 2015, 43(10): 35-41.
Hao-hao DING, Wen-jian WANG, Jun GUO, Qi-yue LIU, Min-hao ZHU. Effect of Axle-load on Rolling Wear and Damage Behaviors of Wheel and Rail Materials. Journal of Materials Engineering, 2015, 43(10): 35-41.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.006      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/35
Fig.1  轮轨试样尺寸
(a)和取样位置(b)
Mass fraction/% Mechanical property
C Si Mn P S σb/MPa δ5/%
Wheel 0.56-0.60 ≤0.40 ≤0.80 ≤0.020 ≤0.015 965 ≥12
Rail 0.65-0.75 0.10-0.50 0.80-1.30 ≤0.025 0.008-0.025 980 ≥9
Table 1  轮轨材料化学成分及力学性能
Fig.2  轮轨试样微观组织
(a)钢轨;(b)车轮
Fig.3  轮轨试样硬度
Fig.4  轮轨试样磨损率与轴重
(a)和时间(b)的关系
Fig.5  轮轨试样硬化率与实验时间
(a)和轴重(b)的关系
Fig.6  轮轨试样硬度比
Fig.7  轮轨试样塑性变形OM照片
(a)车轮12t;(b)车轮21t;(c)车轮30t;(d)钢轨12t;(e)钢轨21t;(f)钢轨30t
Fig.8  轮轨试样表面损伤SEM照片
(a)车轮16t;(b)车轮25t;(c)车轮30t;(d)钢轨16t;(e)钢轨25t;(f)钢轨30t
Fig.9  轮轨试样表面裂纹OM照片
(a)车轮12t;(b)车轮30t;(c)钢轨12t;(d)钢轨30t
Fig.10  磨屑SEM照片
(a)12t;(b)21t;(c)30t
Fig.11  磨屑XRD图谱
1 CORREA N, OYARZABAL O, VADILLO E G, et al Rail corrugation development in high speed lines[J]. Wear, 2011, 271, 2438- 2447.
2 DIRKS B, ENBIOM R Prediction model for wheel profile wear and rolling contact fatigue[J]. Wear, 2011, 271, 210- 217.
3 REN L, XIE G, IWNICKI S D Properties of wheel/rail longitudinal creep force due to sinusoidal short pitch corrugation on railway rails[J]. Wear, 2012, 284-285, 73- 81.
4 温泽峰, 金学松, 刘兴奇 两种型面轮轨滚动接触蠕滑率和摩擦功[J]. 摩擦学学报, 2001, 21 (4): 288- 292.
4 WEN Z F, JIN X S, LIU X Q Creepages and friction work of wheelset and track with two type profiles in rolling contact[J]. Tribology, 2001, 21 (4): 288- 292.
5 WANG W J, ZHONG W, LIU Q Y, et al Investigation on rolling wear and fatigue properties of railway rail[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223 (7): 1033- 1039.
6 邓建辉, 刘启跃, 王飞龙, 等 车速对钢轨接触疲劳损伤的影响及高速线路钢轨选用[J]. 钢铁钒钛, 2006, 27 (3): 48- 54.
6 DENG J H, LIU Q Y, WANG F L, et al Influence of train velocity on rail contact fatigue damage and how to select rail for high-speed[J]. Iron Steel Vanadium Titanium, 2006, 27 (3): 48- 54.
7 王步康, 董光能, 刘永红, 等 钢轨短波长波浪形磨损的安定性分析[J]. 摩擦学学报, 2004, 24 (1): 70- 73.
7 WANG B K, DONG G N, LIU Y H, et al Shakedown analysis of rolling contact surface with short-wavelength corrugation[J]. Tribology, 2004, 24 (1): 70- 73.
8 DONZELLA G, FACCOLI M, GHIDINI A, et al The competitive role of wear and RCF in a rail steel[J]. Engineering Fracture Mechanics, 2005, 72, 287- 308.
9 郭俊, 赵鑫, 金学松, 等 全制动工况下轮轨热-机耦合效应的分析[J]. 摩擦学学报, 2006, 26 (5): 489- 493.
9 GUO J, ZHAO X, JIN X S, et al Analysis of wheel/rail thermal-mechanical coupling effects in sliding case[J]. Tribology, 2006, 26 (5): 489- 493.
10 丁昊昊, 付志凯, 郭火明, 等 三种钢轨材料与车轮匹配时滚动磨损与损伤行为[J]. 摩擦学学报, 2014, 34 (3): 233- 239.
10 DING H H, FU Z K, GUO H M, et al Rolling wear and damage behaviors between three kinds of rail materials and wheel material[J]. Tribology, 2014, 34 (3): 233- 239.
11 宋川, 刘建华, 彭金方, 等 接触应力对车轴钢旋转弯曲微动疲劳寿命的影响[J]. 材料工程, 2014, (2): 34- 38.
11 SONG C, LIU J H, PENG J F, et al Effect of contact stress on rotating bending fretting fatigue life of railway axle steel[J]. Journal of Materials Engineering, 2014, (2): 34- 38.
12 GRASSIE S, NILSSION P, BJURSTROM K, et al Alleviation of rolling contact fatigue on Sweden's heavey haul rialway[J]. Wear, 2002, 253, 42- 53.
13 CLAYTON P Predicting the wear of rails on curves from laboratory data[J]. Wear, 1995, 181-183, 11- 19.
14 王文健, 郭俊, 刘启跃 接触应力对轮轨材料滚动摩擦磨损性能影响[J]. 摩擦学学报, 2011, 31 (4): 352- 356.
14 WANG W J, GUO J, LIU Q Y Effect of contact stress on rolling friction and wear behavior of wheel-rail materials[J]. Tribology, 2011, 31 (4): 352- 356.
15 钟雯. 钢轨的损伤机理研究[D]. 成都: 西南交通大学, 2011.
15 ZHONG W. Experimental investigation of rail damnification mechanism[D]. Chengdu: Southwest Jiaotong University, 2011.
16 谭晓明, 张丹峰, 陈跃良, 等 基于疲劳裂纹萌生机理的铝合金疲劳寿命可靠性评估方法[J]. 航空材料学报, 2014, 34 (2): 84- 89.
16 TAN Xiao-ming, ZHANG Dan-feng, CHEN Yue-liang, et al Probabilistic method to predict fatigue life based on crack initiating micro-mechanism of aluminum alloy[J]. Journal of Aeronautical Materials, 2014, 34 (2): 84- 89.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[3] 陈爽, 韩雪艳, 安帅帅, 王勇杰, 李仕华. 基体表面粗糙度对MoS2/Ti薄膜摩擦磨损性能的影响[J]. 材料工程, 2022, 50(8): 169-177.
[4] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[5] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[6] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[7] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[8] 董慧民, 闫丽, 安学锋, 钱黄海, 苏正涛. 双马树脂基复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2022, 50(12): 71-78.
[9] 王海波, 赵君文, 陶星宇, 戴光泽. 高Cu铸造铝合金的摩擦磨损性能[J]. 材料工程, 2022, 50(11): 109-118.
[10] 张昊, 陈刚, 罗涛, 沈书成. 基于铝热反应Cu-Fe二元合金的微观组织与摩擦性能研究[J]. 材料工程, 2022, 50(11): 119-126.
[11] 孟亦圆, 林莉, 陈军, 金士杰, 罗忠兵. 基于临界折射纵波递归定量分析的纯铁疲劳损伤无损评价[J]. 材料工程, 2022, 50(10): 172-178.
[12] 张祥林, 孟庆春, 许名瑞, 曾本银, 程小全, 孙炜. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8): 169-177.
[13] 郭洪宝, 洪智亮, 李开元, 梅文斌. 2D-C/SiC复合材料轴向加载泊松效应[J]. 材料工程, 2021, 49(8): 178-183.
[14] 柏跃磊, 尹航, 宋广平, 赫晓东, 齐欣欣, 高进, 郝兵兵, 张金泽. 高韧性三元层状陶瓷: 从MAX相到MAB相[J]. 材料工程, 2021, 49(5): 1-23.
[15] 李波, 李圣鑫, 张执南, 张坚, 熊光耀, 沈明学. 热氧老化作用对丁腈橡胶力学性能和摩擦学行为的影响[J]. 材料工程, 2021, 49(5): 114-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn