Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 42-48    DOI: 10.11868/j.issn.1001-4381.2015.10.007
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
Mg2B2O5W,SiC和Gr颗粒增强6061Al基复合材料的摩擦磨损行为
丁雨田(), 王冬强, 胡勇, 彭和思, 马国俊
兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Friction and Wear Behavior of Mg2B2O5w, SiC and Gr Particles Reinforced 6061Al Matrix Composite
Yu-tian DING(), Dong-qiang WANG, Yong HU, He-si PENG, Guo-jun MA
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(4367 KB)   HTML ( 46 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用粉末热挤压法制备2%Mg2B2O5w/6061Al,2%Gr/6061Al,2%SiCp/6061Al,2%Mg2B2O5w+2%Gr/6061A,2%Mg2B2O5w+2%SiCp/6061Al,2%Mg2B2O5w+2%Gr+2%SiCp/6061Al单一及混杂增强的铝基复合材料,并对其耐磨性和摩擦行为进行研究。结果表明:随着载荷的增大,各种复合材料的磨损率均增大,石墨的添加增大了铝基复合材料的磨损率;复合材料的摩擦因数随载荷的增大而降低并趋于稳定,摩擦因数均介于0.22~0.32之间。未加入石墨的复合材料的磨损机制以磨料磨损和轻微的黏着磨损为主,加入石墨后复合材料的磨损机制转变为剧烈的黏着磨损。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁雨田
王冬强
胡勇
彭和思
马国俊
关键词 粉末热挤压增强体铝基复合材料摩擦磨损    
Abstract

Single and hybrid Al matrix composites with 2%Mg2B2O5w/6061Al,2%Gr/6061Al,2%SiCp/6061Al,2%Mg2B2O5w+2%Gr/6061Al, 2%Mg2B2O5w+2%SiCp/6061Al, 2%Mg2B2O5w+2%Gr+2%SiCp/6061Al reinforcements were prepared by powder hot extrusion process, and the wear resistance and the friction behaviour of the single and hybrid Al matrix composites were studied. The results show that the wear rates of all kinds of the composites increase with the load increasing, the wear rate of Al matrix composites increase with the addition of graphite, the friction coefficients of all kinds of the composites decrease with the load increasing and then become stabilized, the friction coefficient is between 0.22 to 0.32. Abrasive wear and slight adhesive wear dominate the wear mechanism of Al matrix composites without graphite, after the addition of graphite, the wear mechanism of Al matrix composites converts into serious adhesive wear.

Key wordspowder hot extrusion    reinforcement    aluminum matrix composite    friction and wear
收稿日期: 2014-11-17      出版日期: 2015-10-17
通讯作者: 丁雨田     E-mail: dingyutian@126.com
作者简介: 丁雨田(1962-),男,教授,博士生导师,主要从事热型连铸技术制备新材料、新型医用镁合金、镍及合金、金属基复合材料等方向的研究,联系地址:甘肃省兰州市七里河区兰工坪路287号材料学院(730050),E-mail:dingyutian@126.com
引用本文:   
丁雨田, 王冬强, 胡勇, 彭和思, 马国俊. Mg2B2O5W,SiC和Gr颗粒增强6061Al基复合材料的摩擦磨损行为[J]. 材料工程, 2015, 43(10): 42-48.
Yu-tian DING, Dong-qiang WANG, Yong HU, He-si PENG, Guo-jun MA. Friction and Wear Behavior of Mg2B2O5w, SiC and Gr Particles Reinforced 6061Al Matrix Composite. Journal of Materials Engineering, 2015, 43(10): 42-48.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.007      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/42
Material Density/(g·cm-3) HV Ultimate tensile strength/MPa Elongation/%
6061Al 2.7191 51.80 210.0 14.13%
2%Mg2B2O5 2.7232 57.16 234.4 11.20%
2%Gr 2.7161 54.90 205.0 9.60%
2%SiC 2.7265 53.50 220.7 12.80%
2%Mg2B2O5+2%Gr 2.7087 49.86 200.0 7.29%
2%Mg2B2O5+2%SiC 2.7360 53.60 214.0 10.69%
2%Mg2B2O5+2%SiC+2%Gr 2.7163 50.97 203.5 7.22%
Table 1  基体合金和复合材料的力学性能
Fig.1  复合材料的SEM照片和EDS分析
(a)2%Mg2B2O5w+2%Gr/6061Al的SEM图片;(b)2%Mg2B2O5w+2%Gr/6061Al中Gr的SEM图片; (c)2%Mg2B2O5w+2%SiCP/6061Al的SEM图片;(d)(a)中增强相A的EDS分析; (e)(a)中增强相B的EDS分析;(f)(a)中增强相C的EDS分析
Fig.2  不同载荷下6种复合材料的磨损率
Fig.3  不同载荷下6种复合材料摩擦因数
Fig.4  载荷为30N时6种复合材料摩擦表面SEM图片
(a)2%Mg2B2O5w/6061Al;(a)2%Gr/6061Al;(c)2%SiCP/6061Al;(d)2%Mg2B2O5w+2%Gr /6061Al; (e)2%Mg2B2O5w+2%SiCP/6061Al;(f)2%Mg2B2O5w+2%Gr+2%SiCP/6061Al
Fig.5  富铁黏附层的EDS分析
Fig.6  载荷30N下6种复合材料磨损表面EDS分析
Fig.7  30N负载下3种复合材料磨屑的SEM图像
(a)2%Mg2B2O5w+2%Gr/6061Al;(b)2%Mg2B2O5w+2%SiCP/6061Al;(c)2%Mg2B2O5w+2%Gr+2%SiCP/6061Al
Fig.8  30N载荷下3种复合材料对偶件的摩擦表面及光镜显微照片
(a)2%Mg2B2O5w+2%Gr/6061Al;(b)2%Mg2B2O5w+2%SiCP/6061Al;(c)2%Mg2B2O5w+2%Gr+2%SiCP/6061Al
1 RAVINDRAN P, MANISEKAR K, NARAYANASAMY P, et al Application of factorial techniques to study the wear of Al hybrid composites with graphite addition[J]. Materials & Design, 2012, 39, 42- 54.
2 杨佼源, 韦习成, 洪晓露, 等 高含量SiC 颗粒增强铝基复合材料的增摩特性研究[J]. 摩擦学学报, 2014, 34 (4): 446- 451.
2 YANG Jiao-yuan, WEI Xi-cheng, HONG Xiao-lu, et al Dry friction coefficient of high content SiC particle reinforced aluminum matrix composite against commercial friction material[J]. Tribology, 2014, 34 (4): 446- 451.
3 RAVINDRAN P, MANISEKAR K, NARAYANASAMY P, et al Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant[J]. Ceramics International, 2013, 39 (2): 1169- 1182.
4 RAO R N, DAS S Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites[J]. Materials & Design, 2010, 31 (3): 1200- 1207.
5 汤赟武, 陈飞, 曹志强, 等 原位生成 TiB2/ZA27 复合材料的组织与耐摩擦磨损性能[J]. 稀有金属材料与工程, 2014, 43 (1): 194- 198.
5 TANG Yun-wu, CHEN Fei, CAO Zhi-qiang, et al Microstructure and friction-wear resistance of in-situ TiB2/ZA27 composites[J]. Rare Metal Materials and Engineering, 2014, 43 (1): 194- 198.
6 王宝顺, 吕一中, 崔 岩, 等. SiCp/ Al 复合材料-半金属刹车材料干摩擦磨损性能研究. 材料工程, 2007, (6): 7-10 WANG Bao-shun, LU Yi-zhong, CUI Yan, et al Dry sliding tribological behavior of SiCp/Al composites against semi-metallic brake pad[J]. Journal of Materials Engineering, 2007, (6): 7- 10.
7 DILER E A, IPEK R Main and interaction effects of matrix particle size, reinforcement particle size and volume fraction on wear characteristics of Al-SiCp composites using central composite design[J]. Composites Part B: Engineering, 2013, 50, 371- 380.
8 刘慧敏, 宋振东, 许萍, 等. TiC/7075铝基复合材料的磨损实验研究[J], 材料工程, 2011, (7): 66-69.
8 LIU Hui-min, SONG Zhen-dong, XU Ping, et al. Experimental study of the wear resistance of TiC/ 7075 Al matrix composite[J]. Journal of Materials Engineering, 2011, (7): 66-69.
9 UMANATH K, PALANIKUMAR K, SELVAMANI S T Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites[J]. Composites: Part B, 2013, 53, 159- 168.
10 ALIDOKHT S A, ABDOLLAH-ZADEHN A, ASSADI H Effect of applied load on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite[J]. Wear, 2013, 305 (1): 291- 298.
11 甄文柱, 梁波 等离子喷涂MoS2/Cu基复合涂层真空摩擦磨损性能[J]. 材料工程, 2013, (8): 16- 22.
11 ZHEN Wen-zhu, LIANG Bo Tribological Behavior of plasma sprayed MoS2/Cu composite coating under vacuum atmosphere[J]. Journal of Materials Engineering, 2013, (8): 16- 22.
12 李维学, 张凯, 戴剑锋, 等 TA2 钛合金表面Al2O3/石墨自润滑沉积层的制备及其摩擦学性能研究[J]. 航空材料学报, 2013, 33 (3): 46- 52.
12 LI Wei-xue, ZHANG Kai, DAI Jian-feng, et al Preparation and tribological properties of self-lubricating Al2O3/graphite composite coating on TA2 titanium[J]. Journal of Aeronautical Materials, 2013, 33 (3): 46- 52.
13 PRABHU R T, VARMA V K, VEDANTAM S Effect of SiC volume fraction and size on dry sliding wear of Fe/SiC/graphite hybrid composites for high sliding speed applications[J]. Wear, 2014, 309 (1): 1- 10.
14 金培鹏, 陈庚, 韩丽, 等 硼酸镁晶须增强 6061 铝基复合材料的干摩擦磨损行为[J]. 中国有色金属学报, 2014, 24 (1): 49- 57.
14 JIN Pei-peng, CHEN Geng, HAN Li, et al Dry sliding friction and wear behaviors of Mg2B2O5 whisker reinforced 6061Al matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2014, 24 (1): 49- 57.
15 LENG J F, JIANG L T, WU G H, et al Effect of graphite particle reinforcement on dry sliding wear of SiC/Gr/Al composites[J]. Rare Metal Materials and Engineering, 2009, 38 (11): 1894- 1898.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[3] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[4] 王海波, 赵君文, 陶星宇, 戴光泽. 高Cu铸造铝合金的摩擦磨损性能[J]. 材料工程, 2022, 50(11): 109-118.
[5] 张家铭, 余伟, 张泽宇. 工业纯钛TA1的高温摩擦与磨损行为[J]. 材料工程, 2021, 49(3): 93-99.
[6] 薛彦庆, 郝启堂, 魏典, 李博. 原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J]. 材料工程, 2021, 49(2): 97-104.
[7] 薛彦庆, 李博, 王新亮, 张晗, 郝启堂. 微合金化对TiB2颗粒增强铝基复合材料微观组织和力学性能影响的研究进展[J]. 材料工程, 2021, 49(11): 51-61.
[8] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[9] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[10] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[11] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[12] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[13] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[14] 黄凯, 蒋日鹏, 李晓谦, 李瑞卿, 张立华. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47(12): 78-84.
[15] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn