Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 60-65    DOI: 10.11868/j.issn.1001-4381.2015.10.010
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
纳米SiC浓度对Ni/纳米MoS2基复合镀层结构和耐磨性能的影响
王红星(), 谈淑咏, 柳秉毅, 沈彤
南京工程学院 材料工程学院 江苏省先进结构材料及应用技术重点实验室, 南京 211167
Effect of Nano-SiC Content on Microstructure and Wear Resistance of Ni/Nano-MoS2 Based Composite Coating
Hong-xing WANG(), Shu-yong TAN, Bing-yi LIU, Tong SHEN
Key Laboratory of Advanced Structural Materials and Application Technology of Jiangsu Province, School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, China
全文: PDF(4124 KB)   HTML ( 50 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用双脉冲复合电镀技术,在瓦特型镀液中,制备含纳米SiC的Ni/MoS2基复合镀层。研究纳米SiC浓度对复合镀层微观形貌、组织结构、显微硬度和摩擦性能的影响。结果表明:镀液中添加纳米SiC后,Ni/MoS2复合镀层的微观形貌产生明显的变化,随镀液中SiC浓度的增加,复合镀层表面致密度提高;镀液中纳米SiC浓度在1.0~1.5g/L时,组织由Ni+MoS2+SiC组成;纳米SiC为1.5g/L时,显微硬度达到最大,为505HV,摩擦因数为0.28,分别为纯Ni/MoS2的1.6倍和1/2。复合镀层的磨损机制以磨料磨损为主。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王红星
谈淑咏
柳秉毅
沈彤
关键词 Ni/MoS2基复合镀层纳米SiC耐磨性能    
Abstract

Ni/MoS2 based composite coatings containing nano-SiC particles was prepared by doublepulse electrodepositing in Watts nickel plating solution. The effect of content of nano-SiC in the solution on the micro morphology, microstructure, hardness and friction properties of coating was investigated. The results show that the micro morphology of Ni/MoS2 composite coating changes obviously after adding nano-SiC particles in electrolyte, the density of the coating surface increases with the increasing of the concentration of nano-SiC particles in electrolyte,the microstructure of coatings is mainly composed of nickel,MoS2 and SiC,when the content of nano-SiC ranging from 1.0-1.5g/L, the hardness of composite coatings increased with increasing the content of nano-SiC in electrolyte, when nano-SiC is 1.5g/L in electrolyte, the microhardness of coating reaches the maximum value of 505 HV and the friction coefficient of coating is 0.28,which is about 1.6 times and 1/2 of pure Ni/MoS2 composite coating respectively;and the wear mechanism of coatings is mainly abrasive wear .

Key wordsNi/MoS2 base composite coating    nano-SiC    wear resistance
收稿日期: 2014-09-04      出版日期: 2015-10-17
基金资助:青年科学基金项目(51301087);南京工程学院资助项目(CKJB201205,201411276024Y)
通讯作者: 王红星     E-mail: wanghx@njit.edu.cn
作者简介: 王红星(1971-),男,博士,副教授,主要从事复合材料制备及性能研究,联系地址:南京工程学院材料工程学院(211167),E-mail: wanghx@njit.edu.cn
引用本文:   
王红星, 谈淑咏, 柳秉毅, 沈彤. 纳米SiC浓度对Ni/纳米MoS2基复合镀层结构和耐磨性能的影响[J]. 材料工程, 2015, 43(10): 60-65.
Hong-xing WANG, Shu-yong TAN, Bing-yi LIU, Tong SHEN. Effect of Nano-SiC Content on Microstructure and Wear Resistance of Ni/Nano-MoS2 Based Composite Coating. Journal of Materials Engineering, 2015, 43(10): 60-65.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.010      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/60
Fig.1  镀液中不同SiC浓度时复合镀层的微观形貌
(a)未添加;(b)0.5g/L;(c)1.0g/L;(d)1.5g/L
Fig.2  复合镀层的截面微观形貌
(a)未添加;(b)0.5g/L;(c)1.0g/L;(d)1.5g/L
Fig.3  镀液中不同SiC浓度时复合镀层XRD图谱
(a)未添加;(b)0.5g/L;(c)1.0g/L;(d)1.5g/L
Fig.4  镀液中 SiC浓度对复合镀层硬度的影响
Fig.5  摩擦因数随时间变化的曲线
Fig.6  镀液中添加不同浓度SiC的复合镀层磨痕形貌
(a)未添加;(b)0.5g/L;(c)1.0g/L;(d)1.5g/L
1 ALIREAZIE S, MONIRVAGHEFI S M, SALEHI M, et al Wear behavior of Ni-P and Ni-P-Al2O3 electroless coatings[J]. Wear, 2007, 262, 978- 985.
2 CHEN L, WANG L P, ZENG Z X, et al. Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni-Al2O3 composite coatings[J]. Surface and Coatings Technology 2006, 201 (3-4): 599-605.
3 FENG Q Y, LI T J, YUE H Y, et al Preparation and characterization of nickel nano-Al2O3 composite coatings by sediment co-deposition[J]. Applied Surface Science, 2008, 254 (8): 2262- 2268.
4 POMPEI E, MAGAGNIN L, LECIS N, et al. Electrodeposition of nickel-BN composite coatings[J]. Electrochimica Acta 2009, 54 (9): 2571-2574.
5 LOW C T J, WILLS R G A, WALSH F C Electrodeposition of composite coatings containing nanoparticles in a metal deposit[J]. Surface and Coatings Technology, 2006, 201 (1-2): 371- 383.
6 HACHEMI B T, ABDELOUAHED C, SAÂD R Microhardness and corrosion behavior of Ni-SiC electrodeposited coatings in presence of organic additives[J]. Surface and Coatings Technology, 2011, 205 (Suppl2): 161- 164.
7 GVL H, UYSAL F K M, ASLAN S, et al Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition[J]. Applied Surface Science, 2012, 258 (10): 4260- 4267.
8 BALARAJU J N, EZHIL S V, RAJAM K S Electrochemical behavior of low phosphorus electroless Ni-P-Si3N4 composite coatings[J]. Materials Chemistry and Physics, 2010, 120 (2-3): 546- 551.
9 KARBASI M, YAZDIAN N, VAHIDIAN A Development of electro-co-deposited Ni-TiC nano-particle reinforced nanocomposite coatings[J]. Surface and Coatings Technology, 2012, 207, 587- 593.
10 ZHAO Q, LIU Y, ABEL E W Effect of Cu content in electroless Ni-Cu-P-PTFE composite coatings on their anti-corrosion properties[J]. Materials Chemistry and Physics, 2004, 8 (7): 332- 335.
11 LIEW K W, CHIA S Y, KOK C K, et al Evaluation on tribological design coatings of Al2O3, Ni-P-PTFE and MoS2 on aluminium alloy 7075 under oil lubrication[J]. Materials and Design, 2013, 48, 77- 84.
12 CARDINAL M F, CASTRO P A, BAXI J, et al Characterization and frictional behavior of nanostructured Ni-W-MoS2 composite coatings[J]. Surface and Coatings Technology, 2009, 204 (1-2): 85- 90.
13 GARCIA L E, GARCIA U I, DIEZ J A, et al Codeposition of inorganic fullerene-like WS2 nanoparticles in an electrodeposited nickel matrix under the influence of ultrasonic agitation[J]. Electrochimica Acta, 2013, 114, 859- 867.
14 WU Y T, LIU H Z, SHEN B, et al. The friction and wear of electroless Ni-P matrix with PTFE and/or SiC particles composite[J]. Tribology International 2006, 39 (6): 553-559.
15 HYANG Y S, ZENG X T, ANNERGREN I, et al Development of electroless NiP-PTFE-SiC composite coating[J]. Surface and Coatings Technology, 2003, 167 (2-3): 207- 211.
16 WANG Z J, WU L N, QI Y L, et al Self-lubricating Al2O3/PTFE composite coating formation on surface of aluminium alloy[J]. Surface and Coatings Technology, 2010, 204 (20): 3315- 3318.
17 HUANG Z J, XIONG D S MoS2 coated with Al2O3 for Ni- MoS2/Al2O3 composite coatings by pulse electrodepositon[J]. Surface and Coatings Technology, 2008, 202 (14): 3208- 3214.
18 王兰, 邵红红, 陈康敏, 等 Ni-P-SiC-MoS2复合镀层结构与性能研究[J]. 腐蚀与防护, 2006, 27 (6): 334- 337.
18 WANG Lan, SHAO Hong-hong, CHEN Kang-min, et al Structure and performance of electroless composite Ni-P-SiC-MoS2 plating[J]. Corrosion and Protection, 2006, 27 (6): 334- 337.
19 丁元柱, 王研 纳米SiC-MoS2/Ni基复合电刷镀层组织与耐磨性能[J]. 材料开发与应用, 2010, 25 (6): 44- 47.
19 DING Yuan-zhu, WANG Yan Microstructure and wear resistance of nano-SiC-MoS2/Ni electro-brush plating composite coating[J]. Development and Application of Materials, 2010, 25 (6): 44- 47.
20 王红星, 杨少锋, 柳秉毅, 等 料浆包渗温度对渗Si层组织结构和性能的影响[J]. 材料工程, 2013, (2): 69- 73.
20 WANG Hong-xing, YANG Shao-feng, LIU Bing-yi, et al Effect of packing temperature on micro structure and properties of siliconized coating[J]. Journal of Materials Engineering, 2013, (2): 69- 73.
21 HUANG Z J, XIONG D S MoS2 coated with Al2O3 for Ni-MoS2 /Al2O3 composite coatings by pulse electro-deposition[J]. Surface and Coatings Technology, 2008, 202 (14): 3208- 3214.
[1] 赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
[2] 王红星, 毛向阳, 沈彤, 张月. 纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响[J]. 材料工程, 2017, 45(1): 52-57.
[3] 刘慧敏, 杨树青, 许萍, 李进福. 原位Al2O3P/7075复合材料微观组织与磨损行为[J]. 材料工程, 2012, 0(11): 1-5.
[4] 许乔瑜, 何伟娇. 非晶态Ni-P-ZrO2复合镀层的耐磨性能[J]. 材料工程, 2010, 0(12): 61-65.
[5] 林新志, 马旭梁. B添加对TiC/Ti6Al4V复合材料组织和耐磨性能的影响[J]. 材料工程, 2009, 0(8): 6-9.
[6] 张辉, 刘荣立. 涤纶织物纳米SiC化学复合镀镍磷[J]. 材料工程, 2008, 0(5): 62-65.
[7] 程秀, 揭晓华, 蔡莲淑, 卢国辉, 谢光荣. Ni-P-SiC(纳米)化学复合镀层的组织与性能[J]. 材料工程, 2006, (1): 43-46,56.
[8] 赵玉珍, 王维斌, 史耀武, 沈莲. 高碳高合金钢的激光表面熔凝处理的耐磨性研究[J]. 材料工程, 2003, 0(2): 37-40.
[9] 陈沙鸥, 郭小龙, 戚凭, 潘秀宏, 张玉军, 王昕, 尹衍升. 纳米SiC颗粒对Al2O3基体中ZrO2约束稳定的影响[J]. 材料工程, 2002, 0(7): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn