Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (10): 79-84    DOI: 10.11868/j.issn.1001-4381.2015.10.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
丁腈橡胶在硬质颗粒环境下的摩擦磨损特性
郑金鹏1, 沈明学1,2, 厉淦1, 彭旭东1,2
1. 浙江工业大学 机械工程学院, 杭州 310032;
2. 浙江工业大学 过程装备及其再制造教育部工程研究中心, 杭州 310032
Friction and Wear Characteristics of Acrylonitrile-butadiene Rubber Under Hard Particles Condition
ZHENG Jin-peng1, SHEN Ming-xue1,2, LI Gan1, PENG Xu-dong1,2
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China;
2. Engineering Research Center of Process Equipment and Its Remanufacture(Ministry of Education), Zhejiang University of Technology, Hangzhou 310032, China
全文: PDF(3422 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用销-盘接触方式考察丁腈橡胶/316L不锈钢配副的摩擦磨损性能,探讨有无Al2O3硬质颗粒及颗粒尺寸对其摩擦学行为的影响。通过扫描电子显微镜(SEM)和表面轮廓仪分析配副材料的磨痕表面形貌。结果表明:硬质颗粒参与磨损能降低接触副表面的摩擦因数;大尺寸颗粒会加速橡胶的磨损并能嵌入橡胶基体形成微切削效应,而随着颗粒尺寸减小至数十微米时,颗粒的存在反而能减缓橡胶的磨损;但颗粒的介入均会加剧配副金属的磨损、硬质颗粒的犁削作用使钢球磨损表面存在大量的犁沟;此外,无颗粒及不同尺寸颗粒环境下丁腈橡胶/不锈钢摩擦副表现出不同的损伤机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑金鹏
沈明学
厉淦
彭旭东
关键词 丁腈橡胶摩擦磨损硬质颗粒橡胶密封损伤机制    
Abstract:The friction and wear characteristics of acrylonitrile-butadiene rubber/316L stainless steel tribo-pairs were investigated using a sphere-on-disc test device. The influence of Al2O3 hard particles and the particle size on the tribological behavior of the tribo-pairs was discussed. The morphology of worn surface was analyzed via scanning electron microscope (SEM) and by using a surface profilometer. The results show that the particles wear can reduce the friction coefficient of the contact pairs; Large particles can accelerate the wear of rubber and large particles can be embedded into the rubber matrix,resulting in micro cutting effect, however, as particle size decreases to about dozens of microns, the existence of particles can mitigate the wear of rubber; All the particles embedded in the rubber matrix can aggravate the wear of metal counterpart and lots of furrows can be observed on metal worn surface caused by the ploughing effect of hard particles; In addition, the NBR/stainless steel tribo-pairs exhibit different damage mechanism under conditions of no particles and particles with different size.
Key wordsacrylonitrile-butadiene rubber    friction and wear    hard particle    rubber seal    damage mechanism
收稿日期: 2014-07-21      出版日期: 2015-10-17
1:  TB117.1  
通讯作者: 沈明学(1982-),男,讲师,博士,微动摩擦学及表面工程,联系地址:浙江省杭州市潮王路18号浙江工业大学机械工程学院化工机械研究所(310032),shenmx@zjut.edu.cn     E-mail: shenmx@zjut.edu.cn
引用本文:   
郑金鹏, 沈明学, 厉淦, 彭旭东. 丁腈橡胶在硬质颗粒环境下的摩擦磨损特性[J]. 材料工程, 2015, 43(10): 79-84.
ZHENG Jin-peng, SHEN Ming-xue, LI Gan, PENG Xu-dong. Friction and Wear Characteristics of Acrylonitrile-butadiene Rubber Under Hard Particles Condition. Journal of Materials Engineering, 2015, 43(10): 79-84.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.013      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/79
[1] 蔡仁良. 流体密封技术:原理与工程应用[M]. 北京:化学工业出版社,2013. CAI R L. Fluid Sealing Technology-Principles and Engineering Applications[M]. Beijing: Chemical Industry Press, 2013.
[2] STOLARSKI T A, TUCKER M. Frictional performance of an O-ring type seal at the commencement of linear motion[J]. Tribology Letters, 1996, 2(4): 405-416.
[3] 邹建华, 吴榕. 分析液压缸活塞杆密封失效原因及防止措施[J].液压与气动密封, 2005, (5): 46-48. ZOU J H, WU R. Sealing failure analysis of hydraulic cylinder's rod and preventive measures[J]. Hydraulics Preumatics & Seals, 2005, (5): 46-48.
[4] DARLING S. Main Coolant Pump Seal Maintenance Guide[M]. USA: Electric Power Research Institute(EPRI), 1993.
[5] SEBASTIANI M, MANGIONE V, DE FELICIS D. Wear mechanisms and in-service surface modifications of a satellite 6B Co-Cr alloy[J]. Wear, 2012, 290-291(6): 10-17.
[6] 吕仁国, 李同生, 刘旭军. 橡胶摩擦磨损特性的研究进展[J]. 高分子材料科学与工程, 2002,18(5): 12-15. LV R G, LI T S, LIU X J. Advances in study on friction-wear of rubbers[J]. Polymer Materials Science & Engineering, 2002, 18(5):12-15.
[7] ZHANG S W. State-of-the-art of polymer tribology[J]. Tribology International, 1998, 31(1-3): 49-60.
[8] FELHOS D, KARGER-KOCSIS J. Tribological testing of peroxide-cured EPDM rubbers with different carbon black contents under dry sliding conditions against steel[J]. Tribology International, 2008, 41(5): 404-415.
[9] 庞佑霞, 许焰, 张昊, 等. 微/纳米复合涂层的抗冲蚀磨损性能[J]. 材料工程, 2013, (9): 60-63. PANG Y X, XU Y, ZHANG H, et al. Erosion resistance of micro/nano composite coating[J]. Journal of Materials Engineering, 2013, (9): 60-63.
[10] WANG L P, GUAN X Y, ZHANG G A. Friction and wear behaviors of carbon-based multilayer coatings sliding against different rubbers in water environment[J]. Tribology International, 2013, 64(8): 69-77.
[11] 何仁洋, 张嗣伟, 王德国. 在干摩擦和边界润滑条件下丁苯橡胶对20#钢的磨损机理研究[J]. 石油大学学报(自然科学版), 2002, 26(1): 59-63. HE R Y, ZHANG S W, WANG D G. Mechanism of wear of 20# steel by styrene-butadiene rubber under the conditions of dry friction and boundary lubrication[J]. Journal of the University of Petroleum, China, 2002, 26(1): 59-63.
[12] 张益, 王世杰, 吕晓仁, 等. 天然石油介质中丁腈橡胶-45#钢摩擦规律研究[J]. 润滑与密封, 2010, 35(8): 51-53. ZHANG Y, WANG S J, LV X R, et al. Study of friction of NBR by 45# steel in crude oil medium[J]. Lubrication Engineering, 2010, 35(8): 51-53.
[13] MOHAMMADREZA M, ELISABET K, BRAHAM P. Tribological behavior of an elastomer aged in different oils[J]. Tribology International, 2008, 41(9-10): 860-866.
[14] VINOGRADOV G V, MUSTAFAEV V A, PODOLSKY Y Y. A study of heavy metal-to-plastic friction duties and of the wear of hardened steel in the presence of polymers[J]. Wear, 1965, 8(5): 358-373.
[15] 何仁洋, 张嗣伟. 塑料与橡胶材料磨损金属的研究进展[J]. 摩擦学学报, 2000, 20(3): 232-235. HE R Y, ZHANG S W. Advances in study on wear of metal by plastics and rubbers[J]. Tribology, 2000, 20(3): 232-235.
[16] REN X Y, PENG Z J, HU Y B, et al. Abrasive wear behavior of TiCN cermets under water-based slurries with different abrasives[J]. Tribology International, 2013, 66(10): 35-43.
[17] SCHALLAMACH A. Friction and abrasion of rubber[J]. Wear, 1958, 1(5): 384-417.
[18] ZHANG S W. Investigation of abrasion of nitrile rubber[J]. Wear, 1984, 57(4): 769-778.
[1] 丁雨田, 王冬强, 胡勇, 彭和思, 马国俊. Mg2B2O5W,SiC和Gr颗粒增强6061Al基复合材料的摩擦磨损行为[J]. 材料工程, 2015, 43(10): 42-48.
[2] 王彬, 薛文斌, 金小越, 吴杰, 华铭, 吴正龙. Q235低碳钢等离子体电解硼碳共渗处理及性能分析[J]. 材料工程, 2014, 0(6): 28-34.
[3] 汪怀远, 林珊, 张帅, 杨淑慧, 朱艳吉. 仿生多孔润滑耐磨CF/PTFE/PEEK复合材料的设计及其摩擦学性能[J]. 材料工程, 2014, 0(6): 45-50.
[4] 庞佑霞, 许焰, 张昊, 唐勇, 刘厚才. 微/纳米复合涂层的抗冲蚀磨损性能[J]. 材料工程, 2013, 0(9): 60-63.
[5] 喻利花, 苑彩云, 许俊华. 磁控溅射NbSiN复合膜的微结构和性能[J]. 材料工程, 2013, 0(7): 35-39.
[6] 顾和根, 蔡振兵, 岳文, 彭金方, 朱旻昊. 车轴钢表面渗氮/渗硫复合层的扭动微动磨损研究[J]. 材料工程, 2013, 0(7): 66-72.
[7] 潘应晖, 许晓静. Ti6Al4V表面磁控溅射高硬SiC薄膜的摩擦磨损性能[J]. 材料工程, 2013, 0(6): 63-66.
[8] 李专, 肖鹏, 岳静, 熊翔. C/C-SiC材料不同制动速率下的湿式摩擦磨损性能[J]. 材料工程, 2013, 0(3): 71-76.
[9] 施俭亮, 付业伟, 李贺军, 费杰, 朱文婷, 张翔. 炭纤维含量对新型陶瓷摩擦材料性能的影响[J]. 材料工程, 2013, (2): 45-49.
[10] 汪勇, 周新远, 宋占永, 黄艳斐, 张伟. 不同热喷涂技术制备铁基涂层摩擦学性能研究[J]. 材料工程, 2013, 0(10): 48-52.
[11] 袁华, 王成国, 卢文博, 张姗, 陈旸, 谢奔. 连续炭纤维增强受电弓滑板致密化及其性能[J]. 材料工程, 2012, 0(7): 5-9.
[12] 易德亮, 冶银平, 刘光, 尹斌, 周惠娣, 陈建敏. 等离子喷涂Al2O3-30%TiO2微米/纳米复合涂层的结构与耐磨性能[J]. 材料工程, 2012, 0(5): 24-29.
[13] 杨绿,周元康,李屹,吴雪梅,陈建海,王陈向. 坡缕石/Ag复合纳米材料添加剂的自修复性能研究[J]. 材料工程, 2012, 0(3): 12-16.
[14] 孙德明, 许崇海, 杨刘波, 吴建军. Cr3C2与(W,Ti)C增强氧化铝陶瓷的摩擦磨损性能[J]. 材料工程, 2012, 0(2): 16-19.
[15] 王发辉, 刘莹. 莫来石纤维含量对陶瓷基摩擦材料摩擦磨损性能的影响[J]. 材料工程, 2012, 0(12): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn