Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 79-84    DOI: 10.11868/j.issn.1001-4381.2015.10.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
丁腈橡胶在硬质颗粒环境下的摩擦磨损特性
郑金鹏1, 沈明学1,2,*(), 厉淦1, 彭旭东1,2
1 浙江工业大学 机械工程学院, 杭州 310032
2 浙江工业大学 过程装备及其再制造教育部工程研究中心, 杭州 310032
Friction and Wear Characteristics of Acrylonitrile-butadiene Rubber Under Hard Particles Condition
Jin-peng ZHENG1, Ming-xue SHEN1,2,*(), Gan LI1, Xu-dong PENG1,2
1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
2 Engineering Research Center of Process Equipment and Its Remanufacture(Ministry of Education), Zhejiang University of Technology, Hangzhou 310032, China
全文: PDF(3422 KB)   HTML ( 25 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用销-盘接触方式考察丁腈橡胶/316L不锈钢配副的摩擦磨损性能,探讨有无Al2O3硬质颗粒及颗粒尺寸对其摩擦学行为的影响。通过扫描电子显微镜(SEM)和表面轮廓仪分析配副材料的磨痕表面形貌。结果表明:硬质颗粒参与磨损能降低接触副表面的摩擦因数;大尺寸颗粒会加速橡胶的磨损并能嵌入橡胶基体形成微切削效应,而随着颗粒尺寸减小至数十微米时,颗粒的存在反而能减缓橡胶的磨损;但颗粒的介入均会加剧配副金属的磨损、硬质颗粒的犁削作用使钢球磨损表面存在大量的犁沟;此外,无颗粒及不同尺寸颗粒环境下丁腈橡胶/不锈钢摩擦副表现出不同的损伤机制。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑金鹏
沈明学
厉淦
彭旭东
关键词 丁腈橡胶摩擦磨损硬质颗粒橡胶密封损伤机制    
Abstract

The friction and wear characteristics of acrylonitrile-butadiene rubber/316L stainless steel tribo-pairs were investigated using a sphere-on-disc test device. The influence of Al2O3 hard particles and the particle size on the tribological behavior of the tribo-pairs was discussed. The morphology of worn surface was analyzed via scanning electron microscope (SEM) and by using a surface profilometer. The results show that the particles wear can reduce the friction coefficient of the contact pairs; Large particles can accelerate the wear of rubber and large particles can be embedded into the rubber matrix,resulting in micro cutting effect, however, as particle size decreases to about dozens of microns, the existence of particles can mitigate the wear of rubber; All the particles embedded in the rubber matrix can aggravate the wear of metal counterpart and lots of furrows can be observed on metal worn surface caused by the ploughing effect of hard particles; In addition, the NBR/stainless steel tribo-pairs exhibit different damage mechanism under conditions of no particles and particles with different size.

Key wordsacrylonitrile-butadiene rubber    friction and wear    hard particle    rubber seal    damage mechanism
收稿日期: 2014-07-21      出版日期: 2015-10-17
基金资助:国家重点基础研究发展规划项目(973) (2014CB046404);国家自然科学基金(51305398);浙江省自然科学基金(LQ13E050013);浙江省教育厅资助项目(Y201329543)
通讯作者: 沈明学     E-mail: shenmx@zjut.edu.cn
作者简介: 沈明学(1982-),男,讲师,博士,微动摩擦学及表面工程,联系地址:浙江省杭州市潮王路18号浙江工业大学机械工程学院化工机械研究所(310032),E-mail: shenmx@zjut.edu.cn
引用本文:   
郑金鹏, 沈明学, 厉淦, 彭旭东. 丁腈橡胶在硬质颗粒环境下的摩擦磨损特性[J]. 材料工程, 2015, 43(10): 79-84.
Jin-peng ZHENG, Ming-xue SHEN, Gan LI, Xu-dong PENG. Friction and Wear Characteristics of Acrylonitrile-butadiene Rubber Under Hard Particles Condition. Journal of Materials Engineering, 2015, 43(10): 79-84.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.013      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/79
Fig.1  球-平面接触摩擦学试验装置结构示意图
Fig.2  试验用Al2O3磨粒的典型SEM形貌(240目颗粒)
Fig.3  不同磨粒粒度下摩擦因数随磨损时间的演变
Fig.4  不同磨粒粒度下橡胶磨损量
(a)和磨损率(b)随磨损时间的变化
Fig.5  配副钢球在不同粒度磨粒下的磨损 比值K随运行时间的变化
Fig.6  150目颗粒环境下橡胶磨损表面的SEM照片
(a)、Al元素分布(b)及局部磨损区的EDX能谱曲线(c)(采样位置见(a)中A)
Fig.7  150目颗粒环境下对磨副钢球磨损表面的SEM照片
Fig.8  600目Al2O3颗粒环境下橡胶
(a)及钢球(b)磨损表面的SEM照片
Fig.9  无颗粒和不同颗粒尺寸下丁腈橡胶磨损表面的二维截面形貌
1 蔡仁良. 流体密封技术: 原理与工程应用[M]. 北京: 化学工业出版社, 2013.
1 CAI R L. Fluid Sealing Technology-Principles and Engineering Applications[M]. Beijing: Chemical Industry Press, 2013.
2 STOLARSKI T A, TUCKER M Frictional performance of an O-ring type seal at the commencement of linear motion[J]. Tribology Letters, 1996, 2 (4): 405- 416.
3 邹建华, 吴榕 分析液压缸活塞杆密封失效原因及防止措施[J]. 液压与气动密封, 2005, (5): 46- 48.
3 ZOU J H, WU R Sealing failure analysis of hydraulic cylinder's rod and preventive measures[J]. Hydraulics Preumatics & Seals, 2005, (5): 46- 48.
4 DARLING S. Main Coolant Pump Seal Maintenance Guide[M]. USA: Electric Power Research Institute(EPRI), 1993.
5 SEBASTIANI M, MANGIONE V, DE FELICIS D Wear mechanisms and in-service surface modifications of a satellite 6B Co-Cr alloy[J]. Wear, 2012, 290-291 (6): 10- 17.
6 吕仁国, 李同生, 刘旭军 橡胶摩擦磨损特性的研究进展[J]. 高分子材料科学与工程, 2002, 18 (5): 12- 15.
6 LV R G, LI T S, LIU X J Advances in study on friction-wear of rubbers[J]. Polymer Materials Science & Engineering, 2002, 18 (5): 12- 15.
7 ZHANG S W State-of-the-art of polymer tribology[J]. Tribology International, 1998, 31 (1-3): 49- 60.
8 FELHOS D, KARGER-KOCSIS J Tribological testing of peroxide-cured EPDM rubbers with different carbon black contents under dry sliding conditions against steel[J]. Tribology International, 2008, 41 (5): 404- 415.
9 庞佑霞, 许焰, 张昊, 等 微/纳米复合涂层的抗冲蚀磨损性能[J]. 材料工程, 2013, (9): 60- 63.
9 PANG Y X, XU Y, ZHANG H, et al Erosion resistance of micro/nano composite coating[J]. Journal of Materials Engineering, 2013, (9): 60- 63.
10 WANG L P, GUAN X Y, ZHANG G A Friction and wear behaviors of carbon-based multilayer coatings sliding against different rubbers in water environment[J]. Tribology International, 2013, 64 (8): 69- 77.
11 何仁洋, 张嗣伟, 王德国 在干摩擦和边界润滑条件下丁苯橡胶对20#钢的磨损机理研究[J]. 石油大学学报(自然科学版), 2002, 26 (1): 59- 63.
11 HE R Y, ZHANG S W, WANG D G Mechanism of wear of 20# steel by styrene-butadiene rubber under the conditions of dry friction and boundary lubrication[J]. Journal of the University of Petroleum, China, 2002, 26 (1): 59- 63.
12 张益, 王世杰, 吕晓仁, 等 天然石油介质中丁腈橡胶-45#钢摩擦规律研究[J]. 润滑与密封, 2010, 35 (8): 51- 53.
12 ZHANG Y, WANG S J, LV X R, et al Study of friction of NBR by 45# steel in crude oil medium[J]. Lubrication Engineering, 2010, 35 (8): 51- 53.
13 MOHAMMADREZA M, ELISABET K, BRAHAM P Tribological behavior of an elastomer aged in different oils[J]. Tribology International, 2008, 41 (9-10): 860- 866.
14 VINOGRADOV G V, MUSTAFAEV V A, PODOLSKY Y Y A study of heavy metal-to-plastic friction duties and of the wear of hardened steel in the presence of polymers[J]. Wear, 1965, 8 (5): 358- 373.
15 何仁洋, 张嗣伟 塑料与橡胶材料磨损金属的研究进展[J]. 摩擦学学报, 2000, 20 (3): 232- 235.
15 HE R Y, ZHANG S W Advances in study on wear of metal by plastics and rubbers[J]. Tribology, 2000, 20 (3): 232- 235.
16 REN X Y, PENG Z J, HU Y B, et al Abrasive wear behavior of TiCN cermets under water-based slurries with different abrasives[J]. Tribology International, 2013, 66 (10): 35- 43.
17 SCHALLAMACH A Friction and abrasion of rubber[J]. Wear, 1958, 1 (5): 384- 417.
18 ZHANG S W Investigation of abrasion of nitrile rubber[J]. Wear, 1984, 57 (4): 769- 778.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[3] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[4] 王海波, 赵君文, 陶星宇, 戴光泽. 高Cu铸造铝合金的摩擦磨损性能[J]. 材料工程, 2022, 50(11): 109-118.
[5] 郭洪宝, 洪智亮, 李开元, 梅文斌. 2D-C/SiC复合材料轴向加载泊松效应[J]. 材料工程, 2021, 49(8): 178-183.
[6] 李波, 李圣鑫, 张执南, 张坚, 熊光耀, 沈明学. 热氧老化作用对丁腈橡胶力学性能和摩擦学行为的影响[J]. 材料工程, 2021, 49(5): 114-121.
[7] 张家铭, 余伟, 张泽宇. 工业纯钛TA1的高温摩擦与磨损行为[J]. 材料工程, 2021, 49(3): 93-99.
[8] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[9] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[10] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[11] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[12] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[13] 黄凯, 蒋日鹏, 李晓谦, 李瑞卿, 张立华. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47(12): 78-84.
[14] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[15] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn