Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 85-90    DOI: 10.11868/j.issn.1001-4381.2015.10.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
Fe-0.03Te-0.3Pb-0.9Mn易切削不锈钢润滑滚动磨损机理研究
何银花1, 王发展1,2,*(), 王哲1, 王永嘉2, 焦炜2, 韩双宗2
1 西安建筑科技大学 材料与矿资学院, 西安 710055
2 西安建筑科技大学 机电工程学院, 西安 710055
Lubricated Rolling Wear Mechanism Study on Fe-0.03Te-0.3Pb-0.9Mn Free-cutting Stainless Steel
Yin-hua HE1, Fa-zhan WANG1,2,*(), Zhe WANG1, Yong-jia WANG2, Wei JIAO2, Shuang-zong HAN2
1 College of Material and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
全文: PDF(3914 KB)   HTML ( 64 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用润滑滚动磨损实验测试Fe-0.03Te-0.3Pb-0.9Mn易切削不锈钢的表面摩擦磨损特性。比较不同磨损时间球珠作用下合金表面磨损形貌、体系硬度、摩擦因数和磨损体积的差异,并对其润滑滚动磨损机理进行深入研究。结果表明:磨损启动期,合金表面磨损性能相对稳定,在MnS和Pb等易切削相交互作用下,合金表面犁削底部开始产生裂纹;磨损稳定期,合金表面性能逐渐变化,犁削底部裂纹持续生长,交织的裂纹开始产生片状或块状凸起物;磨损失效期,合金表面润滑膜和剥落物大量脱落,剥落物形成磨料磨损,犁削逐渐贯通消失,合金表面体系相结构快速瓦解。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何银花
王发展
王哲
王永嘉
焦炜
韩双宗
关键词 Fe-0.03Te-0.3Pb-0.9Mn合金微观组织润滑滚动磨损易切削不锈钢    
Abstract

The friction and wear characteristics of Fe-0.03Te-0.3Pb-0.9Mn free-cutting stainless steel were investigated using a lubricated rolling wear testing apparatus. The wear morphology, hardness, friction coefficient and wear volume of alloy surface were compared in different wear time, its mechanism of lubricated rolling wear was studied further. The results show that, at the beginning of wear, the performance of alloy surface wear is relatively stable, under the interaction of free-cutting phase, such as MnS and Pb, that cracks occur at the alloy surface plough bottom; When the wear is stable, the performance of alloy surface changed gradually, the cracks of plough bottom continue growing, interweaved cracks begin to generate flake or block convex parts; When the wear is over, the alloy surface lubrication film and exfoliation numerous are flaking off, exfoliation formed abrasive wear, plough disappeared step by step, the alloy surface system is collapsed rapidly.

Key wordsFe-0.03Te-0.3Pb-0.9Mn alloy    microstructure    lubricated rolling wear    free-cutting stainless steel
收稿日期: 2014-07-22      出版日期: 2015-10-17
通讯作者: 王发展     E-mail: wangfz10_1@163.com
作者简介: 王发展(1966-),男,教授,博士生导师,主要从事易切削材料制备与摩擦磨损研究,联系地址:西安建筑科技大学材料与矿资学院(710055),E-mail: wangfz10_1@163.com
引用本文:   
何银花, 王发展, 王哲, 王永嘉, 焦炜, 韩双宗. Fe-0.03Te-0.3Pb-0.9Mn易切削不锈钢润滑滚动磨损机理研究[J]. 材料工程, 2015, 43(10): 85-90.
Yin-hua HE, Fa-zhan WANG, Zhe WANG, Yong-jia WANG, Wei JIAO, Shuang-zong HAN. Lubricated Rolling Wear Mechanism Study on Fe-0.03Te-0.3Pb-0.9Mn Free-cutting Stainless Steel. Journal of Materials Engineering, 2015, 43(10): 85-90.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.014      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/85
C Si Mn P S Cr Mo Pb Te Fe
0.03 0.40 0.90 0.04 0.35 19.50 2.00 0.30 0.03 Bal
Table 1  实验用钢的化学成分(质量分数/%)
Fig.1  润滑滚动磨损实验原理图
Fig.2  Fe-0.03Te-0.3Pb-0.9Mn合金的SEM图与能谱图
(a)横向截面;(b)纵向截面;(c)Pb能谱分析;(d)MnS能谱分析
Fig.3  Fe-0.03Te-0.3Pb-0.9Mn合金在不同润滑滚动 磨损时间下的摩擦因数曲线
Fig.4  Fe-0.03Te-0.3Pb-0.9Mn合金润滑滚动磨损1h时表面SEM图
(a)横向截面;(b)纵向截面
Fig.5  Fe-0.03Te-0.3Pb-0.9Mn合金润滑滚动磨损2h时表面SEM图
(a)横向截面;(b)纵向截面
Fig.6  Fe-0.03Te-0.3Pb-0.9Mn合金润滑滚动磨损3h表面SEM图
(a)横向截面;(b)纵向截面
Fig.7  Fe-0.03Te-0.3Pb-0.9Mn合金硬度和磨损体积随润滑滚动磨损时间变化的曲线
(a)横向截面;(b)纵向截面
Fig.8  Fe-0.03Te-0.3Pb-0.9Mn润滑滚动磨损机理示意图
1 LOU D, CUI K, JIA Y Study on the machinability of resulfurized composite free-cutting steels[J]. Journal of Materials Engineering and Performance, 1997, 6 (2): 215- 218.
2 IWAMOTO T, MURAKAMI T Bar and wire steels for gears and valves of automobiles-eco-friendly free cutting steel without lead addition[J]. JFE GIHO, 2004, (4): 64- 69.
3 肖来荣, 张路怀, 舒学鹏, 等 无铅锑黄铜轧制工艺的研究[J]. 材料工程, 2009, (1): 288- 292.
3 XIAO L R, ZHANG L H, SHU X P, et al Research of rolling technique of unleaded brass containing stibium[J]. Journal of Materials Engineering, 2009, (1): 288- 292.
4 WU D, LI Z A new Pb-free machinable austenitic stainless steel[J]. Journal of Iron and Steel Research, International, 2010, 17 (1): 59- 63.
5 王昕, 尹树春, 贺磊, 等 0[J]. 05C-0.3Si-2.0Mn-xCe系钢液的洁净度与夹杂物变性行为[J]. 材料工程, 2013, (3): 42- 50.
5 WANG X, YIN S C, HE L, et al The cleanliness and modification behavior of nonmetallic inclusions in 0[J]. 05C-0.3Si- 2.0Mn-xCe molten steel[J]. Journal of Materials Engineering, 2013, (3): 42- 50.
6 LI Y, SUZUKI T, TANG N, et al Microstructure evolution of SUS303 free-cutting steel during hot compression process[J]. Materials Science and Engineering: A, 2013, 583 (7): 161- 168.
7 王哲, 王发展, 王欣, 等 Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟[J]. 物理学报, 2014, 63 (7): 1011- 10115.
7 WANG Z, WANG F Z, WANG X, et al Three-dimensional modelling of numerical simulation on segregation during Fe-Pb alloy solidification in a multiphase system[J]. Acta Physica Sinica, 2014, 63 (7): 1011- 10115.
8 王哲, 王发展, 何银花, 等 Fe-Bi-Mn 三元合金多相相变-扩散体系中易切削相析出规律的数值研究[J]. 金属学报, 2014, :50 (11): 1393- 1402.
8 WANG Z, WANG F Z, HE Y H, et al Numerical study on free-cutting phase precipitation behavior in Fe-Bi-Mn ternary alloy multiphase transformation-diffusion system[J]. Acta Metallurgica Sinica, 2014, :50 (11): 1393- 1402.
9 NAZABAL J L, URCOLA J J, FUENTES M Hot ductility of leaded free-cutting steels[J]. Metallography, 1984, 17 (4): 439- 453.
10 MURAKAMI Y, MINE K, USUKI H Fatigue strength of annealed 0[J]. 45% carbon leaded-free-cutting steel[J]. Tetsuto Hagane, 1988, 74 (6): 1113- 1118.
11 BERNSMANN G, BLEYMEHL M, EHL R, et al The making of free cutting steels with additions of lead, bismuth, tellurium, selenium and tin[J]. Stahl und Eisen, 2001, 121 (2): 87- 91.
12 KOUMOTO T, NISHI T, MORI M, et al Development of non-lead-added free-cutting steel for automobile parts[J]. SAE Technical, 2004, 42 (1): 1527- 1538.
13 GUDURU R K, SCATTERGOOD R O, KOCH C C, et al Mechanical properties of nanocrystalline Fe-Pb and Fe-Al2O3[J]. Scripta Materialia, 2006, 54 (11): 1879- 1883.
14 ZHU M, GAO Y, CHUNG C Y, et al Improvement of the wear behaviour of Al-Pb alloys by mechanical alloying[J]. Wear, 2000, 242 (1): 47- 53.
15 POURASIABI H M D, SAGHAFIAN H, POURASIABI H Effect of austempering process on microstructure and wear behavior of ductile iron containing Mn-Ni-Cu-Mo[J]. Metals and Materials International, 2013, 19 (1): 67- 76.
16 王振生, 郭建亭, 周兰章, 等 NiAl-Cr (Mo)-Ho-Hf 共晶合金的高温磨损特性[J]. 金属学报, 2009, 45 (3): 297- 301.
16 WANG Z S, GUO J T, ZHOU L Z, et al High temperature wear behavior of NiAl-Cr(Mo)-Ho-Hf eutectic alloy[J]. Acta Metallurgica Sinica, 2009, 45 (3): 297- 301.
17 杨建恒, 张永振, 邱明, 等 Ti6Al4V高速干滑动摩擦磨损特性研究[J]. 材料工程, 2006, (1): 35- 38.
17 YANG J H, ZHANG Y Z, QIU M, et al Wearing characteristic of Ti6Al4V in high dry sliding friction[J]. Journal of Materials Engineering, 2006, (1): 35- 38.
[1] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[4] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[5] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[6] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[7] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[8] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[9] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[10] 吴祖骥, 范佳锋, 李京懋, 朱德智, 屈盛官, 李小强. Ti添加对WC-Ni3Al硬质合金微观组织与力学性能的影响[J]. 材料工程, 2022, 50(12): 103-111.
[11] 邹田春, 陈敏英, 梅思远, 祝贺, 杨旭东. 激光选区熔化纳米SiC/AlSi7Mg复合材料微观组织及力学性能[J]. 材料工程, 2022, 50(12): 143-151.
[12] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[13] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[14] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[15] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn