1 Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 The Headquarters of the General Staff of the Aviation Department Equipment Development Office, Beijing 100082, China
Carbon nanotube reinforced metal matrix composites (CNT/MMCs) owing to high specific strength and specific elastic modulus as well as exceptional thermal and electrical properties, possess great potential in aerospace applications. Based on the analysis on the published literatures, the processing techniques and the CNT/metal interface research advances was evaluated,and some typical properties were summarized. It is pointed out that, the dispersion of carbon nanotubes, and interfacial characteristics between CNT and metal matrix would be mainly important research areas in future.
Using elastomer to improve dispersion of CNTs in metallic powder followed by sintering and hot extrusion
Uniform dispersion of CNTs and good interfacial bonding
The content of CNTs is low
Friction stir process
Inserting CNTs into holes or grooves on the metal matrix,then applying frictional force to weld CNT and metal together
Partial reinforced composites can be prepared
Heavy damage to CNTs
Table 1 CNT/MMCs的制备方法及其优缺点
Composite
Processing technique
E/GPa
HV
σ0.2/MPa
σb/MPa
δ/%
Ref
10% CNT/Cua
Molecular-level mixing,SPS
135.0
-
455
-
-
[39]
6% CNT/Ala
Stir friction welding
-
65.0
-
190.2
9.6
[45]
4% CNT/Al-4Cua
Molecular-level mixing,ball milling,SPS
93.0
-
384
470.0
6.8
[60]
3% CNT/Ala
Ball milling,hot rolling
-
-
456
571.0
6.0
[61]
3% CNT/ 2024a
Ball milling,hot rolling
-
255.0
780
-
2.0
[62]
2.5% CNT/Alb
In-situ PM
-
-
276
334.0
17.9
[23]
2% CNT/Mgb
Mixing,hot press and HIP
38.6
-
89
140.0
3.0
[63]
2% CNT/7055a
Flake PM
88.0
-
771
820.0
5.0
[64]
1.6% CNT/Ala
Nano-scale dispersion,hot extrusion
-
-
-
230.0
6.0
[42]
1% CNT/Mg-6Zna
Pre-dispersing,semisolid stirring,ultrasonically processed and squeeze casting
-
-
100
181.0
6.9
[29]
1% CNT/Alb
Cu-coated CNTs,ball milling,sintering and hot rolling
-
79.0
190
290.0
5.0
[20]
1% CNT/2024b
Stirring,ball milling,CIP and hot extrusion
102.2
135.0
-
521.7
20.0
[65]
1% CNT/A356.2b
SiC-coated CNTs,stirring casting
70.0
-
187
265.0
1.7
[66]
1% CNT/AZ31b
Ball milling,melting and solidification
-
96.6
-
210.3
8.56
[28]
0.35% CNT/Tib
Functionalized CNTs,wet mixing,SPS and hot extrusion
-
285.0
697
754.0
34.8
[12]
Table 2 碳纳米管/金属基复合材料的力学性能
1
POPOV V N Carbon nanotubes: properties and application[J]. Materials Science and Engineering R: Reports, 2004, 43 (3): 61- 102.
2
SALVETAT-DELMOTTE J P, RUBIO A Mechanical properties of carbon nanotubes: a fiber digest for beginners[J]. Carbon, 2002, 40 (10): 1729- 1734.
3
XIE X L, MAI Y W, ZHOU X P Dispersion and alignment of carbon nanotubes in polymer matrix: a review[J]. Materials Science and Engineering R: Reports, 2005, 49 (4): 89- 112.
4
LAURENT C, FLAHAUT E, PEIGNEY A The weight and density of carbon nanotubes versus the number of walls and diameter[J]. Carbon, 2010, 48 (10): 2994- 2996.
5
JIANG H, LIU B, HUANG Y, et al Thermal expansion of single wall carbon nanotubes[J]. Journal of Engineering Materials and Technology, 2004, 126 (3): 265- 270.
6
BAKSHI S R, LAHIRI D, AGARWAL A Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55 (1): 41- 64.
7
KUZUMAKI T, MIYAZAWA K, ICHINOSE H, et al Processing of carbon nanotube reinforced aluminum composite[J]. Jounarl of Material Research, 1998, 13 (9): 2445- 2449.
8
ZHONG R, CONG H T, HOU P X Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes[J]. Carbon, 2003, 41 (4): 848- 851.
9
LIAO J Z, TAN M J, SRIDHAR I Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites[J]. Materials & Design, 2010, 31 (Suppl1): 96- 100.
ZHANG Y H, LI G, MIAO M H, et al Microstructure and mechanical properties of carbon nanotube reinforced magnesium matrix composties by powder metallurgy[J]. Acta Materiae Compositae Sinica, 2013, 30 (Suppl1): 102- 106.
11
KONDOH K, FUKUDA H, UMEDA J, et al Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites[J]. Materials Science and Engineering: A, 2010, 527 (16-17): 4103- 4108.
12
KONDOH K, THRERUJIRAPAPONG T, IMAI H, et al Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes[J]. Composites Science and Technology, 2009, 69 (7): 1077- 1081.
13
SOTOUDEHNIA M M, PA L A Dispersion of carbon nanotubes in iron by wet processing for the preparation of iron-carbon nanotube composites[J]. Powder Technology, 2014, 258, 1- 5.
14
ESAWI A M K, EL BORADY M A Carbon nanotube-reinforced aluminium strips[J]. Composites Science and Technology, 2008, 68 (2): 486- 492.
XU S J, XIAO B L, LIU Z Y, et al Microstructure and mechanical properties of CNT/Al composties fabricated by high energy ball-miling method[J]. Acta Metallurgica Sinica, 2012, 48 (7): 882- 888.
16
CHOI H J, KWON G B, LEE G Y, et al Reinforcement with carbon nanotubes in aluminum matrix composites[J]. Scripta Materialia, 2008, 59 (3): 360- 363.
NIE J H, ZHANG Y F, SHI N, et al Fabrication and properties of Cu matrix composites reinforced by tungsten-coated carbon nanotubes[J]. Journal of University of Science and Technology Beijing, 2012, 34 (7): 823- 829.
18
SINGHAL S K, PASRICHA R, TEOTIA S, et al Fabrication and characterization of Al-matrix composites reinforced with amino-functionalized carbon nanotubes[J]. Composites Science and Technology, 2011, 72 (1): 103- 111.
19
SINGHAL S K, PASRICHA R, JANGRA M, et al Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites[J]. Powder Technology, 2012, 215-216, 254- 263.
20
MAQBOOL A, HUSSAIN M A, KHALID F A, et al Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites[J]. Materials Characterization, 2013, 86, 39- 48.
21
HE C N, ZHAO N Q, SHI C S, et al An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing peinforced Al-matrix composites[J]. Advanced Materials, 2007, 19 (8): 1128- 1132.
LI H P. Synthesis in-situ of carbon nanotubes over Al matrix and the structure and property of their composite[D]. Tianjin: Tianjin University, 2008.
23
YANG X D, LIU E Z, SHI C S, et al Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds, 2013, 563, 216- 220.
24
LI H P, FAN J W, GENG X X, et al Alumina powder assisted carbon nanotubes reinforced Mg matrix composites[J]. Materials & Design, 2014, 60, 637- 642.
25
LI Q Q, VIERECKL A, ROTTMAIR C A, et al Improved processing of carbon nanotube/magnesium alloy composites[J]. Composites Science and Technology, 2009, 69 (7-8): 1193- 1199.
26
LI Q Q, ROTTMAIR C A, SINGER R F CNT reinforced light metal composites produced by melt stirring and by high pressure die casting[J]. Composites Science and Technology, 2010, 70 (16): 2242- 2247.
27
LIU S Y, GAO F P, ZHANG Q Y, et al Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing[J]. Transactions of Nonferrous Metals Society of China, 2010, 20 (7): 1222- 1227.
28
ZENG X S, ZHOU G H, XU Q, et al A new technique for dispersion of carbon nanotube in a metal melt[J]. Materials Science and Engineering: A, 2010, 527 (20): 5335- 5340.
29
LI C D, WANG X J, LIU W Q, et al Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite[J]. Materials & Design, 2014, 58, 204- 208.
30
UOZUMI H, KOBAYASHI K, NAKANISHI K, et al Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting[J]. Materials Science and Engineering: A, 2008, 495 (1-2): 282- 287.
ZHOU S M. Fabrication and properties of carbon nanotubes reinforced aluminum matrix composites by pressureless infiltration technology[D]. Hanzhou: Zhejiang University, 2009.
32
AN B G, LI L X, LI H X Electrodeposition in the Ni-plating bath containing multi-walled carbon nanotubes[J]. Materials Chemistry and Physics, 2008, 110 (2-3): 481- 485.
CHEN X H, WANG J X, DENG F M, et al Electroless plating of carbon nanotube with nickel[J]. New Carbon Materials, 2000, 15 (4): 39- 43.
34
CHEN X H, XIA J T, PENG J C, et al Carbon-nanotube metal-matrix composites prepared by electroless plating[J]. Composites Science and Technology, 2000, 60 (2): 301- 306.
35
WANG F, ARAI S, ENDO M Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process[J]. Electrochemistry Communications, 2004, 6 (10): 1042- 1044.
36
LAHA T, AGARWAL A, MCKECHNIE T, et al Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite[J]. Materials Science and Engineering: A, 2004, 381 (1-2): 249- 258.
37
BAKSHI S R, SINGH V, SEAL S, et al Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders[J]. Surface and Coatings Technology, 2009, 203 (10-11): 1544- 1554.
38
BAKSHI S R, SINGH V, BALANI K, et al Carbon nanotube reinforced aluminum composite coating via cold spraying[J]. Surface and Coatings Technology, 2008, 202 (21): 5162- 5169.
39
CHA S I, KIM K T, ARSHAD S N, et al Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials, 2005, 17 (11): 1377- 1381.
40
NAM D H, KIM Y K, CHA S I, et al Effect of CNTs on precipitation hardening behavior of CNT/Al-Cu composites[J]. Carbon, 2012, 50 (13): 4809- 4814.
41
NOGUCHI T, MAGARIO A, FUKAZAWA S, et al Carbon nanotube/aluminium composites with uniform dispersion[J]. Materials Transactions, 2004, 45 (2): 602- 604.
42
YUUKI J, KWON H, KAWASAKI A, et al Fabrication of carbon nanotube reinforced aluminum composite by powder extrusion process[J]. Materials Science Forum, 2007, 534-536, 889- 892.
43
KWON H, ESTILI M, TAKAGI K, et al Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2009, 47 (3): 570- 577.
44
KWON H, KAWASAKI A Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures[J]. Journal of Nanoscience and Nanotechnology, 2009, 9 (11): 6542- 6548.
45
LIU Q, KE L M, LIU F C, et al Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing[J]. Materials & Design, 2013, 45, 343- 348.
46
MORISADA Y, FUJII H, NAGAOKA T, et al MWCNTs/AZ31 surface composites fabricated by friction stir processing[J]. Materials Science and Engineering: A, 2006, 419 (1): 344- 348.
47
LIU Z Y, XIAO B L, WANG W G, et al Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing[J]. Carbon, 2012, 50 (5): 1843- 1852.
48
IZADI H, GERLICH A P Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites[J]. Carbon, 2012, 50 (12): 4744- 4749.
LI W L, XIA C, XING L, et al Influence of pin shape on homogeneity of CNTs distribution in CNTs/Al composite fabricated by friction stir process[J]. Journal of Materials Engineering, 2014, (1): 75- 78.
50
GEORGE R, KASHYAP K T, RAHUL R, et al Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J]. Scripta Materialia, 2005, 53 (10): 1159- 1163.
51
XU C L, WEI B Q, MA R Z, et al Fabrication of aluminum-carbon nanotube composites and their electrical properties[J]. Carbon, 1999, 37 (5): 855- 858.
52
CI L J, RYU Z, JIN-PHILLIPP N Y, et al Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum[J]. Acta Materialia, 2006, 54 (20): 5367- 5375.
53
ESAWI A M K, MORSI K, SAYED A, et al The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42 (3): 234- 243.
54
LI H P, KANG J L, HE C N, et al Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures[J]. Materials Science and Engineering: A, 2013, 577, 120- 124.
55
BAKSHI S R, KESHRI A K, SINGH V, et al Interface in carbon nanotube reinforced aluminum silicon composites: Thermodynamic analysis and experimental verification[J]. Journal of Alloys and Compounds, 2009, 481 (1-2): 207- 213.
56
SONG H Y, ZHA X W Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube-aluminum composites[J]. Computational Materials Science, 2010, 49 (4): 899- 903.
57
FUKUDA H, KONDOH K, UMEDA J, et al Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6wt[J]. % Al alloy matrix composites reinforced with carbon nanotubes[J]. Composites Science and Technology, 2011, 71 (5): 705- 709.
58
NAI M H, WEI J, GUPTA M Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites[J]. Materials & Design, 2014, 60, 490- 495.
59
KUZUMAKI T, UJIIE O, ICHINOSE H, et al Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite[J]. Adv Eng Mater, 2000, 2 (7): 416- 418.
60
NAM D H, CHA S I, LIM B K, et al Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites[J]. Carbon, 2012, 50 (7): 2417- 2423.
61
YOO S J, HAN S H, KIM W J Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J]. Scripta Materialia, 2013, 68 (9): 711- 714.
62
CHOI H J, MIN B H, SHIN J H, et al Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42 (10): 1438- 1444.
63
CARREÑO-MORELLI E, YANG J, COUTEAU E, et al Carbon nanotube/magnesium composites[J]. physica status solidi (a), 2004, 201 (8): R53- R55.
64
WEI H, LI Z Q, XIONG D B, et al Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design[J]. Scripta Materialia, 2014, 75, 30- 33.
65
DENG C F, WANG D Z, ZHANG X X, et al Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering: A, 2007, 444 (1-2): 138- 145.
66
SO K P, JEONG J C, PARK J G, et al SiC formation on carbon nanotube surface for improving wettability with aluminum[J]. Composites Science and Technology, 2013, 74, 6- 13.
67
DONG S R, TU J P, ZHANG X B An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes[J]. Materials Science and Engineering: A, 2001, 313 (1-2): 83- 87.
68
CHEN W X, TU J P, GAN H Y, et al Electroless preparation and tribological properties of Ni-P-Carbon nanotube composite coatings under lubricated condition[J]. Surface and Coatings Technology, 2002, 160 (1): 68- 73.
69
CHEN W X, TU J P, WANG L Y, et al Tribological application of carbon nanotubes in a metal-based composite coating and composites[J]. Carbon, 2003, 41 (2): 215- 222.
70
TU J P, ZHU L P, CHEN W X, et al Preparation of Ni-CNT composite coatings on aluminum substrate and its friction and wear behavior[J]. Transactions of Nonferrous Metals Society of China, 2004, 14 (5): 880- 884.
71
ZHOU S M, ZHANG X B, DING Z P, et al Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38 (2): 301- 306.
72
KIM I Y, LEE J H, LEE G S, et al Friction and wear characteristics of the carbon nanotube-aluminum composites with different manufacturing conditions[J]. Wear, 2009, 267 (1-4): 593- 598.
73
TANG Y B, CONG H T, ZHONG R, et al Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum[J]. Carbon, 2004, 42 (15): 3260- 3262.
74
DENG C F, MA Y X, ZHANG P, et al Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes[J]. Materials Letters, 2008, 62 (15): 2301- 2303.
75
WU J H, ZHANG H L, ZHANG Y, et al Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering[J]. Materials & Design, 2012, 41, 344- 348.
76
CHO S, KIKUCHI K, KAWASAKI A On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite[J]. Acta Materialia, 2012, 60 (2): 726- 736.
77
AN Z L, TODA M, ONO T Improved thermal interface property of carbon nanotube Cu composite based on supercritical fluid deposition[J]. Carbon, 2014, 75, 281- 288.
78
FRANK S, PONCHARAL P, WANG Z L, et al Carbon nanotube quantum resistors[J]. Science, 1998, 280 (5370): 1744- 1746.
79
WEI B Q, VAJTAI R, AJAYAN P M Reliability and current carrying capacity of carbon nanotubes[J]. Applied Physics Letters, 2001, 79 (8): 1172- 1174.
80
EBBESEN T W, LEZEC H J, HIURA H, et al Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382, 54- 56.
WU Q, JIA C C, NIE J H The mechanical and electrical properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes[J]. Powder Metallurgy Technology, 2012, 30 (3): 171- 176.
82
YANG Y L, WANG Y D, REN Y, et al Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field[J]. Materials Letters, 2008, 62 (1): 47- 50.
83
ZHOU X, SHIN E, WANG K W, et al Interfacial damping characteristics of carbon nanotube-based composites[J]. Composites Science and Technology, 2004, 64 (15): 2425- 2437.
YIN Z X, WANG Q H, TAN G P, et al Study of properties of aluminum composites with multi-walled carbon nanotube and alumina[J]. Materials Review, 2010, 24 (Suppl2): 174- 176.
85
DENG C F, WANG D Z, ZHANG X X, et al Damping characteristics of carbon nanotube reinforced aluminum composite[J]. Materials Letters, 2007, 61 (14-15): 3229- 3231.
YANG C W, HU X G, ZHANG L, et al Study of functionalization on multi-wall carbon nanotubes by ultrasound[J]. Journal of Materials Engineering, 2008, (7): 79- 82.
MAO L, WU H Q, ZHANG N, et al Microwave-assisted synthesis and magnetic properties of composition-controlled Cu(1-x)Nix/MWCNTs nanocomposites[J]. Journal of Materials Engineering, 2013, (10): 93- 97.
88
YUAN J G, ZHU Y F, LI Y, et al Effect of multi-wall carbon nanotubes supported palladium addition on hydrogen storage properties of magnesium hydride[J]. International Journal of Hydrogen Energy, 2014, 39 (19): 10184- 10194.