Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 91-101    DOI: 10.11868/j.issn.1001-4381.2015.10.015
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管增强金属基复合材料的研究进展
何天兵1, 胡仁伟2, 何晓磊1, 李沛勇1,*()
1 北京航空材料研究院, 北京 100095
2 总参陆航部装备发展办公室, 北京 100082
Progress in Research on Carbon Nanotube Reinforced Metal Matrix Composites
Tian-bing HE1, Ren-wei HU2, Xiao-lei HE1, Pei-yong LI1,*()
1 Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 The Headquarters of the General Staff of the Aviation Department Equipment Development Office, Beijing 100082, China
全文: PDF(1024 KB)   HTML ( 36 )  
输出: BibTeX | EndNote (RIS)      
摘要 

碳纳米管增强金属基复合材料由于高的比强度、比模量以及优异的热、电性能在航空航天领域具有很好的应用潜力,本文在分析大量文献的基础上,评述该类材料的制备技术和界面研究进展,对其典型性能进行归纳,指出碳纳米管的分散技术以及碳管、基体之间的界面特性应该是今后本领域的重点研究方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何天兵
胡仁伟
何晓磊
李沛勇
关键词 碳纳米管金属基复合材料制备技术分散性界面    
Abstract

Carbon nanotube reinforced metal matrix composites (CNT/MMCs) owing to high specific strength and specific elastic modulus as well as exceptional thermal and electrical properties, possess great potential in aerospace applications. Based on the analysis on the published literatures, the processing techniques and the CNT/metal interface research advances was evaluated,and some typical properties were summarized. It is pointed out that, the dispersion of carbon nanotubes, and interfacial characteristics between CNT and metal matrix would be mainly important research areas in future.

Key wordscarbon nanotubes (CNTs)    metal matrix composites (MMCs)    processing technique    dispersion    interface
收稿日期: 2014-05-23      出版日期: 2015-10-17
通讯作者: 李沛勇     E-mail: pyli@vip.163.com
作者简介: 李沛勇(1967-),男,研究员,博士,主要从事金属阻尼材料、高温铝合金及铝基复合材料的研究,联系地址:北京市81信箱2分箱(100095),E-mail: pyli@vip.163.com
引用本文:   
何天兵, 胡仁伟, 何晓磊, 李沛勇. 碳纳米管增强金属基复合材料的研究进展[J]. 材料工程, 2015, 43(10): 91-101.
Tian-bing HE, Ren-wei HU, Xiao-lei HE, Pei-yong LI. Progress in Research on Carbon Nanotube Reinforced Metal Matrix Composites. Journal of Materials Engineering, 2015, 43(10): 91-101.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.015      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/91
Fig.1  NSD法制备CNT/Al复合材料的工艺流程图[42]
Fig.2  搅拌摩擦法的示意图[45]
Processing technique Procedure Advantage Disadvantage
Powder metallurgy Mixing CNTs with metal powder by stirring and ball milling,followed by consolidation CNTs and metal ratio can be designed Long period
Stir casting Dispersing CNTs into molten metal by mechanical stirring and solidify to prepare a composite structure Low cost CNTs form clusters,chemical reaction at high temperature
Melt infiltration Fabricating a porous preform with dispersed CNTs,then infiltrating liquid metal into the pores No cast defects,uniform distribution of CNTs Difficult in preparing CNTs preform
Electrochemical deposition Coating CNTs with reduction of metal matrix ions in the bath Thin coatings and one dimension composites can be produced Complex composition of bath,the reaction is not well-controlled
Spray forming Spraying of CNTs and metal mixed powder onto a substrate to form a coating/deposit Rapid cooling rate,low interfacial reaction CNTs lost,porous structure and voids
Molecular-level mixing Introducing functionalized CNTs into melt-salt bath to prepare CNT-metal precursor,then drying,calcination and reduction to produce composites powder CNTs distribute homogeneously,good interfacial bonding The kinds of metal matrix are limited
Nano-scale dispersion Using elastomer to improve dispersion of CNTs in metallic powder followed by sintering and hot extrusion Uniform dispersion of CNTs and good interfacial bonding The content of CNTs is low
Friction stir process Inserting CNTs into holes or grooves on the metal matrix,then applying frictional force to weld CNT and metal together Partial reinforced composites can be prepared Heavy damage to CNTs
Table 1  CNT/MMCs的制备方法及其优缺点
Composite Processing technique E/GPa HV σ0.2/MPa σb/MPa δ/% Ref
10% CNT/Cua Molecular-level mixing,SPS 135.0 - 455 - - [39]
6% CNT/Ala Stir friction welding - 65.0 - 190.2 9.6 [45]
4% CNT/Al-4Cua Molecular-level mixing,ball milling,SPS 93.0 - 384 470.0 6.8 [60]
3% CNT/Ala Ball milling,hot rolling - - 456 571.0 6.0 [61]
3% CNT/ 2024a Ball milling,hot rolling - 255.0 780 - 2.0 [62]
2.5% CNT/Alb In-situ PM - - 276 334.0 17.9 [23]
2% CNT/Mgb Mixing,hot press and HIP 38.6 - 89 140.0 3.0 [63]
2% CNT/7055a Flake PM 88.0 - 771 820.0 5.0 [64]
1.6% CNT/Ala Nano-scale dispersion,hot extrusion - - - 230.0 6.0 [42]
1% CNT/Mg-6Zna Pre-dispersing,semisolid stirring,ultrasonically processed and squeeze casting - - 100 181.0 6.9 [29]
1% CNT/Alb Cu-coated CNTs,ball milling,sintering and hot rolling - 79.0 190 290.0 5.0 [20]
1% CNT/2024b Stirring,ball milling,CIP and hot extrusion 102.2 135.0 - 521.7 20.0 [65]
1% CNT/A356.2b SiC-coated CNTs,stirring casting 70.0 - 187 265.0 1.7 [66]
1% CNT/AZ31b Ball milling,melting and solidification - 96.6 - 210.3 8.56 [28]
0.35% CNT/Tib Functionalized CNTs,wet mixing,SPS and hot extrusion - 285.0 697 754.0 34.8 [12]
Table 2  碳纳米管/金属基复合材料的力学性能
1 POPOV V N Carbon nanotubes: properties and application[J]. Materials Science and Engineering R: Reports, 2004, 43 (3): 61- 102.
2 SALVETAT-DELMOTTE J P, RUBIO A Mechanical properties of carbon nanotubes: a fiber digest for beginners[J]. Carbon, 2002, 40 (10): 1729- 1734.
3 XIE X L, MAI Y W, ZHOU X P Dispersion and alignment of carbon nanotubes in polymer matrix: a review[J]. Materials Science and Engineering R: Reports, 2005, 49 (4): 89- 112.
4 LAURENT C, FLAHAUT E, PEIGNEY A The weight and density of carbon nanotubes versus the number of walls and diameter[J]. Carbon, 2010, 48 (10): 2994- 2996.
5 JIANG H, LIU B, HUANG Y, et al Thermal expansion of single wall carbon nanotubes[J]. Journal of Engineering Materials and Technology, 2004, 126 (3): 265- 270.
6 BAKSHI S R, LAHIRI D, AGARWAL A Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55 (1): 41- 64.
7 KUZUMAKI T, MIYAZAWA K, ICHINOSE H, et al Processing of carbon nanotube reinforced aluminum composite[J]. Jounarl of Material Research, 1998, 13 (9): 2445- 2449.
8 ZHONG R, CONG H T, HOU P X Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes[J]. Carbon, 2003, 41 (4): 848- 851.
9 LIAO J Z, TAN M J, SRIDHAR I Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites[J]. Materials & Design, 2010, 31 (Suppl1): 96- 100.
10 张云鹤, 李庚, 苗孟河, 等 粉末冶金法碳纳米管增强镁基复合材料的微观组织及力学性能[J]. 复合材料学报, 2013, 30 (Suppl1): 102- 106.
10 ZHANG Y H, LI G, MIAO M H, et al Microstructure and mechanical properties of carbon nanotube reinforced magnesium matrix composties by powder metallurgy[J]. Acta Materiae Compositae Sinica, 2013, 30 (Suppl1): 102- 106.
11 KONDOH K, FUKUDA H, UMEDA J, et al Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites[J]. Materials Science and Engineering: A, 2010, 527 (16-17): 4103- 4108.
12 KONDOH K, THRERUJIRAPAPONG T, IMAI H, et al Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes[J]. Composites Science and Technology, 2009, 69 (7): 1077- 1081.
13 SOTOUDEHNIA M M, PA L A Dispersion of carbon nanotubes in iron by wet processing for the preparation of iron-carbon nanotube composites[J]. Powder Technology, 2014, 258, 1- 5.
14 ESAWI A M K, EL BORADY M A Carbon nanotube-reinforced aluminium strips[J]. Composites Science and Technology, 2008, 68 (2): 486- 492.
15 许世娇, 肖伯律, 刘振宇, 等 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48 (7): 882- 888.
15 XU S J, XIAO B L, LIU Z Y, et al Microstructure and mechanical properties of CNT/Al composties fabricated by high energy ball-miling method[J]. Acta Metallurgica Sinica, 2012, 48 (7): 882- 888.
16 CHOI H J, KWON G B, LEE G Y, et al Reinforcement with carbon nanotubes in aluminum matrix composites[J]. Scripta Materialia, 2008, 59 (3): 360- 363.
17 聂俊辉, 张亚丰, 史娜, 等 镀钨碳纳米管增强铜基复合材料的制备及性能[J]. 北京科技大学学报, 2012, 34 (7): 823- 829.
17 NIE J H, ZHANG Y F, SHI N, et al Fabrication and properties of Cu matrix composites reinforced by tungsten-coated carbon nanotubes[J]. Journal of University of Science and Technology Beijing, 2012, 34 (7): 823- 829.
18 SINGHAL S K, PASRICHA R, TEOTIA S, et al Fabrication and characterization of Al-matrix composites reinforced with amino-functionalized carbon nanotubes[J]. Composites Science and Technology, 2011, 72 (1): 103- 111.
19 SINGHAL S K, PASRICHA R, JANGRA M, et al Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites[J]. Powder Technology, 2012, 215-216, 254- 263.
20 MAQBOOL A, HUSSAIN M A, KHALID F A, et al Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites[J]. Materials Characterization, 2013, 86, 39- 48.
21 HE C N, ZHAO N Q, SHI C S, et al An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing peinforced Al-matrix composites[J]. Advanced Materials, 2007, 19 (8): 1128- 1132.
22 李海鹏. 碳纳米管在铝基体上原位合成及其复合材料的组织与性能[D]. 天津: 天津大学, 2008.
22 LI H P. Synthesis in-situ of carbon nanotubes over Al matrix and the structure and property of their composite[D]. Tianjin: Tianjin University, 2008.
23 YANG X D, LIU E Z, SHI C S, et al Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds, 2013, 563, 216- 220.
24 LI H P, FAN J W, GENG X X, et al Alumina powder assisted carbon nanotubes reinforced Mg matrix composites[J]. Materials & Design, 2014, 60, 637- 642.
25 LI Q Q, VIERECKL A, ROTTMAIR C A, et al Improved processing of carbon nanotube/magnesium alloy composites[J]. Composites Science and Technology, 2009, 69 (7-8): 1193- 1199.
26 LI Q Q, ROTTMAIR C A, SINGER R F CNT reinforced light metal composites produced by melt stirring and by high pressure die casting[J]. Composites Science and Technology, 2010, 70 (16): 2242- 2247.
27 LIU S Y, GAO F P, ZHANG Q Y, et al Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing[J]. Transactions of Nonferrous Metals Society of China, 2010, 20 (7): 1222- 1227.
28 ZENG X S, ZHOU G H, XU Q, et al A new technique for dispersion of carbon nanotube in a metal melt[J]. Materials Science and Engineering: A, 2010, 527 (20): 5335- 5340.
29 LI C D, WANG X J, LIU W Q, et al Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite[J]. Materials & Design, 2014, 58, 204- 208.
30 UOZUMI H, KOBAYASHI K, NAKANISHI K, et al Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting[J]. Materials Science and Engineering: A, 2008, 495 (1-2): 282- 287.
31 周胜名. 碳纳米管增强铝基复合材料的无压渗透法制备及性能研究[D]. 杭州: 浙江大学, 2009.
31 ZHOU S M. Fabrication and properties of carbon nanotubes reinforced aluminum matrix composites by pressureless infiltration technology[D]. Hanzhou: Zhejiang University, 2009.
32 AN B G, LI L X, LI H X Electrodeposition in the Ni-plating bath containing multi-walled carbon nanotubes[J]. Materials Chemistry and Physics, 2008, 110 (2-3): 481- 485.
33 陈小华, 王健雄, 邓福铭, 等 碳纳米管的化学镀镍研究[J]. 新型炭材料, 2000, 15 (4): 39- 43.
33 CHEN X H, WANG J X, DENG F M, et al Electroless plating of carbon nanotube with nickel[J]. New Carbon Materials, 2000, 15 (4): 39- 43.
34 CHEN X H, XIA J T, PENG J C, et al Carbon-nanotube metal-matrix composites prepared by electroless plating[J]. Composites Science and Technology, 2000, 60 (2): 301- 306.
35 WANG F, ARAI S, ENDO M Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process[J]. Electrochemistry Communications, 2004, 6 (10): 1042- 1044.
36 LAHA T, AGARWAL A, MCKECHNIE T, et al Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite[J]. Materials Science and Engineering: A, 2004, 381 (1-2): 249- 258.
37 BAKSHI S R, SINGH V, SEAL S, et al Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders[J]. Surface and Coatings Technology, 2009, 203 (10-11): 1544- 1554.
38 BAKSHI S R, SINGH V, BALANI K, et al Carbon nanotube reinforced aluminum composite coating via cold spraying[J]. Surface and Coatings Technology, 2008, 202 (21): 5162- 5169.
39 CHA S I, KIM K T, ARSHAD S N, et al Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials, 2005, 17 (11): 1377- 1381.
40 NAM D H, KIM Y K, CHA S I, et al Effect of CNTs on precipitation hardening behavior of CNT/Al-Cu composites[J]. Carbon, 2012, 50 (13): 4809- 4814.
41 NOGUCHI T, MAGARIO A, FUKAZAWA S, et al Carbon nanotube/aluminium composites with uniform dispersion[J]. Materials Transactions, 2004, 45 (2): 602- 604.
42 YUUKI J, KWON H, KAWASAKI A, et al Fabrication of carbon nanotube reinforced aluminum composite by powder extrusion process[J]. Materials Science Forum, 2007, 534-536, 889- 892.
43 KWON H, ESTILI M, TAKAGI K, et al Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2009, 47 (3): 570- 577.
44 KWON H, KAWASAKI A Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures[J]. Journal of Nanoscience and Nanotechnology, 2009, 9 (11): 6542- 6548.
45 LIU Q, KE L M, LIU F C, et al Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing[J]. Materials & Design, 2013, 45, 343- 348.
46 MORISADA Y, FUJII H, NAGAOKA T, et al MWCNTs/AZ31 surface composites fabricated by friction stir processing[J]. Materials Science and Engineering: A, 2006, 419 (1): 344- 348.
47 LIU Z Y, XIAO B L, WANG W G, et al Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing[J]. Carbon, 2012, 50 (5): 1843- 1852.
48 IZADI H, GERLICH A P Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites[J]. Carbon, 2012, 50 (12): 4744- 4749.
49 李文龙, 夏春, 邢丽, 等 搅拌针形状对搅拌摩擦加工制备CNTs/铝基复合材料均匀性的影响[J]. 材料工程, 2014, (1): 75- 78.
49 LI W L, XIA C, XING L, et al Influence of pin shape on homogeneity of CNTs distribution in CNTs/Al composite fabricated by friction stir process[J]. Journal of Materials Engineering, 2014, (1): 75- 78.
50 GEORGE R, KASHYAP K T, RAHUL R, et al Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J]. Scripta Materialia, 2005, 53 (10): 1159- 1163.
51 XU C L, WEI B Q, MA R Z, et al Fabrication of aluminum-carbon nanotube composites and their electrical properties[J]. Carbon, 1999, 37 (5): 855- 858.
52 CI L J, RYU Z, JIN-PHILLIPP N Y, et al Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum[J]. Acta Materialia, 2006, 54 (20): 5367- 5375.
53 ESAWI A M K, MORSI K, SAYED A, et al The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42 (3): 234- 243.
54 LI H P, KANG J L, HE C N, et al Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures[J]. Materials Science and Engineering: A, 2013, 577, 120- 124.
55 BAKSHI S R, KESHRI A K, SINGH V, et al Interface in carbon nanotube reinforced aluminum silicon composites: Thermodynamic analysis and experimental verification[J]. Journal of Alloys and Compounds, 2009, 481 (1-2): 207- 213.
56 SONG H Y, ZHA X W Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube-aluminum composites[J]. Computational Materials Science, 2010, 49 (4): 899- 903.
57 FUKUDA H, KONDOH K, UMEDA J, et al Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6wt[J]. % Al alloy matrix composites reinforced with carbon nanotubes[J]. Composites Science and Technology, 2011, 71 (5): 705- 709.
58 NAI M H, WEI J, GUPTA M Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites[J]. Materials & Design, 2014, 60, 490- 495.
59 KUZUMAKI T, UJIIE O, ICHINOSE H, et al Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite[J]. Adv Eng Mater, 2000, 2 (7): 416- 418.
60 NAM D H, CHA S I, LIM B K, et al Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites[J]. Carbon, 2012, 50 (7): 2417- 2423.
61 YOO S J, HAN S H, KIM W J Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J]. Scripta Materialia, 2013, 68 (9): 711- 714.
62 CHOI H J, MIN B H, SHIN J H, et al Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42 (10): 1438- 1444.
63 CARREÑO-MORELLI E, YANG J, COUTEAU E, et al Carbon nanotube/magnesium composites[J]. physica status solidi (a), 2004, 201 (8): R53- R55.
64 WEI H, LI Z Q, XIONG D B, et al Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design[J]. Scripta Materialia, 2014, 75, 30- 33.
65 DENG C F, WANG D Z, ZHANG X X, et al Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering: A, 2007, 444 (1-2): 138- 145.
66 SO K P, JEONG J C, PARK J G, et al SiC formation on carbon nanotube surface for improving wettability with aluminum[J]. Composites Science and Technology, 2013, 74, 6- 13.
67 DONG S R, TU J P, ZHANG X B An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes[J]. Materials Science and Engineering: A, 2001, 313 (1-2): 83- 87.
68 CHEN W X, TU J P, GAN H Y, et al Electroless preparation and tribological properties of Ni-P-Carbon nanotube composite coatings under lubricated condition[J]. Surface and Coatings Technology, 2002, 160 (1): 68- 73.
69 CHEN W X, TU J P, WANG L Y, et al Tribological application of carbon nanotubes in a metal-based composite coating and composites[J]. Carbon, 2003, 41 (2): 215- 222.
70 TU J P, ZHU L P, CHEN W X, et al Preparation of Ni-CNT composite coatings on aluminum substrate and its friction and wear behavior[J]. Transactions of Nonferrous Metals Society of China, 2004, 14 (5): 880- 884.
71 ZHOU S M, ZHANG X B, DING Z P, et al Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38 (2): 301- 306.
72 KIM I Y, LEE J H, LEE G S, et al Friction and wear characteristics of the carbon nanotube-aluminum composites with different manufacturing conditions[J]. Wear, 2009, 267 (1-4): 593- 598.
73 TANG Y B, CONG H T, ZHONG R, et al Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum[J]. Carbon, 2004, 42 (15): 3260- 3262.
74 DENG C F, MA Y X, ZHANG P, et al Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes[J]. Materials Letters, 2008, 62 (15): 2301- 2303.
75 WU J H, ZHANG H L, ZHANG Y, et al Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering[J]. Materials & Design, 2012, 41, 344- 348.
76 CHO S, KIKUCHI K, KAWASAKI A On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite[J]. Acta Materialia, 2012, 60 (2): 726- 736.
77 AN Z L, TODA M, ONO T Improved thermal interface property of carbon nanotube Cu composite based on supercritical fluid deposition[J]. Carbon, 2014, 75, 281- 288.
78 FRANK S, PONCHARAL P, WANG Z L, et al Carbon nanotube quantum resistors[J]. Science, 1998, 280 (5370): 1744- 1746.
79 WEI B Q, VAJTAI R, AJAYAN P M Reliability and current carrying capacity of carbon nanotubes[J]. Applied Physics Letters, 2001, 79 (8): 1172- 1174.
80 EBBESEN T W, LEZEC H J, HIURA H, et al Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382, 54- 56.
81 吴琼, 贾成厂, 聂俊辉 镀W碳纳米管增强Mg基复合材料的力学和电学性能[J]. 粉末冶金技术, 2012, 30 (3): 171- 176.
81 WU Q, JIA C C, NIE J H The mechanical and electrical properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes[J]. Powder Metallurgy Technology, 2012, 30 (3): 171- 176.
82 YANG Y L, WANG Y D, REN Y, et al Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field[J]. Materials Letters, 2008, 62 (1): 47- 50.
83 ZHOU X, SHIN E, WANG K W, et al Interfacial damping characteristics of carbon nanotube-based composites[J]. Composites Science and Technology, 2004, 64 (15): 2425- 2437.
84 尹志新, 王庆慧, 覃桂萍, 等 多壁碳纳米管/氧化铝混杂增强铝基复合材料的阻尼特性研究[J]. 材料导报, 2010, 24 (Suppl2): 174- 176.
84 YIN Z X, WANG Q H, TAN G P, et al Study of properties of aluminum composites with multi-walled carbon nanotube and alumina[J]. Materials Review, 2010, 24 (Suppl2): 174- 176.
85 DENG C F, WANG D Z, ZHANG X X, et al Damping characteristics of carbon nanotube reinforced aluminum composite[J]. Materials Letters, 2007, 61 (14-15): 3229- 3231.
86 杨春巍, 胡信国, 张亮, 等 多壁碳纳米管的超声处理对PtRu/MWCNTs电催化性能的影响[J]. 材料工程, 2008, (7): 79- 82.
86 YANG C W, HU X G, ZHANG L, et al Study of functionalization on multi-wall carbon nanotubes by ultrasound[J]. Journal of Materials Engineering, 2008, (7): 79- 82.
87 冒丽, 吴华强, 张宁, 等 微波法制备组成可控Cu(1-x)Nix/MWCNTs复合材料及其磁性能[J]. 材料工程, 2013, (10): 93- 97.
87 MAO L, WU H Q, ZHANG N, et al Microwave-assisted synthesis and magnetic properties of composition-controlled Cu(1-x)Nix/MWCNTs nanocomposites[J]. Journal of Materials Engineering, 2013, (10): 93- 97.
88 YUAN J G, ZHU Y F, LI Y, et al Effect of multi-wall carbon nanotubes supported palladium addition on hydrogen storage properties of magnesium hydride[J]. International Journal of Hydrogen Energy, 2014, 39 (19): 10184- 10194.
[1] 熊京鹏, 刘勇. 镁基复合材料界面调控研究进展[J]. 材料工程, 2023, 51(1): 1-15.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[4] 杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
[5] 黄俊俏, 沈之川, 钟嘉炜, 谢文浩, 施志聪. 聚合物固态电解质-锂负极界面的研究进展[J]. 材料工程, 2022, 50(5): 62-77.
[6] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[7] 唐帅, 刘佳敏, 李林鲜, 温希平, 彭庆, 刘振宇, 王国栋. 钒微合金钢中α-Fe/V4C3界面结构与稳定性的第一性原理计算[J]. 材料工程, 2022, 50(5): 172-177.
[8] 张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
[9] 刘旺冠, 蒋兴华, 郭建华. 氮化铝/氮化硼/碳纳米管/硅橡胶复合材料的力致填料取向对导热性能的影响[J]. 材料工程, 2022, 50(2): 127-134.
[10] 张安邦, 汪晨阳, 赵尚骞, 常增花, 王建涛. 固态电池中的正极/电解质界面性质研究进展[J]. 材料工程, 2022, 50(11): 46-62.
[11] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[12] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
[13] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[14] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[15] 卢国锋, 乔生儒. 具有莫来石界面的C/Si-C-N复合材料热物理性能[J]. 材料工程, 2021, 49(9): 135-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn