1 The Key Laboratory of Space Applied Physics and Chemistry (Ministry of Education), Northwestern Polytechnical University, Xi'an 710129, China 2 Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
The chemical reaction mechanism of preparing typical ceramics (C,SiC and BxC) was studied,using C3H6(propylene)+H2, MTS+H2+Ar, CH4+BCl3+H2, and C3H6(propylene)+BCl3+H2 as precursors,and based on the quantum mechanics combined with statistical thermodynamics, variational transition state theory and chemical reaction kinetics. The thermochemistry data are predicted in a prescript high accuracy. The process is to determine as many as possible the reaction intermediates and transition states, to develop their thermochemistry data, to examine the reaction thermodynamics properties of the reaction system, to identify the possible reaction pathways, to evaluate the rate constants of the most favorable paths, and to explore the reaction rates. These researches are scientifically instructive to the composition control and processing optimization for layered carbon, anti-oxidation SiC and self-healing BxC. Problems concerning the theoretical methods are also proposed to be further studied.
张瑾, 苏克和, 马咏梅, 曾庆丰, 成来飞, 张立同. 先驱体制备典型陶瓷(C,SiC和BxC)的化学反应机理研究[J]. 材料工程, 2015, 43(10): 102-112.
Jin ZHANG, Ke-he SU, Yong-mei MA, Qing-feng CENG, Lai-fei CHENG, Li-tong ZHANG. Chemical Reaction Mechanism of Typical Ceramics (C, SiC and BxC) Produced from Their Precursors. Journal of Materials Engineering, 2015, 43(10): 102-112.
SCHMIDT S, BEYER S, KNABE H, et al Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2003, 55 (3): 409- 420.
2
NASL R Design, preparation and properties of non-oxide CMCS for application in engines and nuclear reactors: An overview: Symposium on multifunctional materials and structures[J]. Composites Science and Technology, 2003, 64 (2): 155- 170.
WANG Kun, CHEN Liu-ding, ZHENG Xiang Comparison of tensile behavior of plain-woven carbon/silicon carbide composites at room temperature and high temperature[J]. Journal of Aeronautical Materials, 2010, 30 (1): 78- 84.
4
XU Y D, CHENG L F, ZHANG L T, et al Carbon silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J]. Carbon, 1999, 37 (8): 1179- 1187.
5
QUEMARDA L, REBILLAT F, GUETTE A, et al Self-healing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments[J]. Journal of the European Ceramic Society, 2007, 27 (4): 2085- 2094.
ZHOU Xin-gui, ZHANG Chang-rui, HE Xin-bo, et al A study on the hot press of pyrolysised carbon coated carbon fiber reinforced silicon carbide composite[J]. Journal of Materials Engineering, 2000, (3): 39- 41.
JIAO Huan, ZHOU Wan-cheng, LI Xiang Growth rate and deposition process of SiC with water vapor introduced by CVD[J]. Journal of Materials Engineering, 2000, (12): 12- 14.
8
WU S J, CHENG L F, YANG W B, et al Oxidation protective multilayer CVD SiC coatings modified by a graphitic B-C interlayer for 3D C/SiC composite[J]. Applied Composite Materials, 2006, 13 (6): 397- 406.
9
FARIZY G, CHERMANT J L, SANGLEBOEUF J C, et al SiCf-SiBC composites: microstructural investigations of the as received material and creep tested composites under an oxidative environment[J]. Journal of Microscopy-oxford, 2003, 210 (2): 176- 186.
ZHANG Li-tong, CHENG Lai-fei, XU Yong-dong, et al Progress on self-healing silicon carbide ceramic matrix composites and its applications[J]. Journal of Aeronautical Materials, 2006, 26 (3): 226- 232.
11
POPLE J A, HEAD-GORDON M, FOX D J, et al Gaussian-1 theory: a general procedure for prediction of molecular energies[J]. The Journal of Chemical Physics, 1989, 90 (10): 5622- 5629.
12
CURTISS L A, JONES C, TRUCKS G W, et al Gaussian-1 theory of molecular energies for second-row compounds[J]. The Journal of Chemical Physics, 1990, 93 (4): 2537- 2545.
13
CURTISS L A, RAGHAVACHARI K, TRUCKS G W, et al Gaussian-2 theory for molecular energies of first-and second-row compounds[J]. The Journal of Chemical Physics, 1991, 94 (11): 7221- 7230.
14
CURTISS L A, RAGHAVACHARI K, POPLE J A Gaussian-2 theory using reduced møller-pleset orders[J]. The Journal of Chemical Physics, 1993, 98 (2): 1293- 1298.
15
CURTISS L A, CARPENTER J E, RAGHAVACHARI K, et al Validity of additivity approximations used in Gaussian-2 theory[J]. The Journal of Chemical Physics, 1992, 96 (12): 9030- 9034.
16
CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al. Gaussian-3 theory for molecules congaining first and second-row atoms[J]. 1998, 109(18): 7746-7754.
17
CURTISS L A, REDFERN P C, RAGHAVACHARI K, et al Gaussian-3 theory using reduced Møller-Pleset order[J]. The Journal of Chemical Physics, 1999, 110 (10): 4703- 4709.
18
BABOUL A G, CURTISS L A, REDFERN P C, et al Gaussian-3 theory using density functional geometries and zero-point energies[J]. The Journal of Chemical Physics, 1999, 110 (10): 7650- 7657.
19
CURTISS L A, REDFERN P C, RAGHAVACHARI K, et al Assessment of gaussian-3 and density-functional theories on the G3/05 test set of experimental energies[J]. The Journal of Chemical Physics, 2005, 123 (12): 124107- 1-12.
20
CURTISS L A, REDFERN P C, KRISHNAN R Gaussian-4 theory[J]. The Journal of Chemical Physics, 2007, 126 (8): 084108- 1-12.
21
CURTISS L A, REDFERN P C, KRISHNAN R Gaussian-4 theory using reduced order perturbation theory[J]. The Journal of Chemical Physics, 2007, 127 (12): 124105- 1-8.
22
NYDEN M R, PETERSSON G A Complete basis set correlation energies[J]. 1. the asymptotic convergence of pair natural orbital expansions[J]. The Journal of Chemical Physics, 1981, 75 (4): 1843- 1862.
23
PETERSSON G A, BENNETT A, TENSFELDT T G, et al A complete basis set model chemistry[J]. 1. The total energy of closed-shell atoms and hydrides of the first-row elements[J]. The Journal of Chemical Physics, 1988, 89 (4): 2193- 2218.
24
PETERSSON G A, ALLAHAM M A A complete basis set model chemistry[J]. 2. Open-shell systems and the total energies of the first-row atoms[J]. The Journal of Chemical Physics, 1991, 94 (9): 6081- 6090.
25
PETERSSON G A, TENSFELDT T G, MONTGOMERY J A, et al A complete basis set model chemistry[J]. 3. The complete basis set-quadratic configuration interaction family of methods[J]. The Journal of Chemical Physics, 1991, 94 (9): 6091- 6101.
26
MONTGOMERY J A, OCHTERSKI J W, PETERSSON G A A complete basis set model chemistry[J]. 4. an improved atomic pair natural orbital method[J]. The Journal of Chemical Physics, 1994, 101 (7): 5900- 5909.
27
OCHTERSKI J W, PETERSSON G A, MONTGOMERY J A A complete basis set model chemistry[J]. 5. Extensions to six or more heavy atoms[J]. The Journal of Chemical Physics, 1996, 104 (7): 2598- 2619.
28
MONTGOMERY J A, FRISCH M J, OCHTERSKI J W, et al A complete basis set model chemistry[J]. 6. Use of density functional geometries and frequencies[J]. The Journal of Chemical Physics, 1999, 110 (6): 2822- 2827.
29
WOOD G P F, PETERSSON G A, BARNES E C, et al A restricted-open-shell complete-basis-set model chemistry[J]. The Journal of Chemical Physics, 2006, 125 (9): 094106- 1-16.
30
BARNES E C, PETERSSON P A MP2/CBS atomic and molecular benchmarks for H through Ar[J]. The Journal of Chemical Physics, 2010, 132 (11): 114111- 1-9.
31
DUMINDA S R, PETERSSON P A CCSD(T)/CBS atomic and molecular benchmarks for H through Ar[J]. The Journal of Chemical Physics, 2013, 138 (14): 144103- 1-12.
32
GE Y, GORDON M S, BATTAGLIA F, et al Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase[J]. 1. thermodynamics[J]. Journal of Physical Chemistry A, 2007, 111 (8): 1462- 1474.
33
DENG J L, SU K H, ZENG Y, et al Investigation of thermodynamic properties of gaseous SiC(X3Π and a1Σ) with accurate model chemistry calculations[J]. Physical A: Statistical Mechanics and Its Applications, 2008, 387 (22): 5440- 5456.
34
YAO X P, SU K H, DENG J L, et al Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis[J]. Computational Materials Science, 2007, 40 (4): 504- 524.
35
DENG J L, SU K H, YAO X P, et al Erratum to: ''Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis[J]. Computational Materials Science, 2008, 44 (2): 838- 840.
36
DAVID R L. CRC Handbook of Chemistry and Physics, 77th ed[M]. New York: CRC Press, 1996-1997.
37
CHASE M W, DAVIES C A, DOWNEY J R, et al. NIST-JANAF Thermochemical Tables Forth Edition[M]. New York: American Chemical Society and American Institute of Physics, 1998.
38
DENG J L, SU K H, WANG X, et al Thermodynamics of the gas-phase reactions in the chemical vapor deposition of silicon-carbide with methyltrichlorosilane precursor[J]. Theoretical Chemistry Account, 2009, 122 (1-2): 1- 22.
39
DENG J L, SU K H, WANG X, et al Thermodynamics of the production of condensed phases in the chemical vapor deposition process of methyltrichlorosilane pyrolysis[J]. Chemical Vapor Deposition, 2009, 15 (10-15): 281- 290.
40
ZENG Q F, SU K H, ZHANG L T, et al Evaluation of the thermodynamic date of CH3SiCl3 based on quantum chemistry calculations[J]. Journal of Physical and Chemical Reference Date, 2006, 35 (2): 1385- 1390.
41
ZENG Y, SU K H, DENG J L, et al Thermodynamic investigation of the gas-phase reactions in the chemical vapor deposition of boron carbide with BCl3-CH4-H2 precursors[J]. Journal of Molecular Structure Theochem, 2008, 861 (1-3): 103- 116.
42
WANG T, SU K H, DENG J L, et al Reaction thermodynamic in chemical vapor deposition of boron carbide with BCl3-C3H6-H2 precursors[J]. Journal of Theoretical & Computational Chemistry, 2008, 7 (6): 1269- 1312.
DENG Juan-li. Thermodynamics of the reaction in the CVD/CVI preparation of the self-healing SiC ceramic matrix composite materials[D]. Xi'an: Northwestern Polytechnical University, 2009.
44
DENG J L, CHENG L F, ZHANG L T, et al Thermodynamics of the production of condensed phases in the chemical vapor deposition process of zirconium diboride with ZrCl4-BCl3-H2 precursors[J]. Thin Solid Films, 2012, 520 (6): 2331- 2335.
45
DENG J L, CHENG L F, ZHANG L T, et al Thermodynamic on study co-deposition of ZrB2-SiC from ZrCl4-BCl3-CH3SiCl3-H2 system[J]. Thin Solid Films, 2012, 520 (23): 7030- 7034.
46
DENG J L, CHENG L F, ZHENG G P, et al Thermodynamics on formation of condensed phases during CVD Si3N4 process with SiCl4-NH3-H2 precursors[J]. Advanced Engineering Materials, 2011, 194-196, 1516- 1523.
47
XUE J M, YIN X W, YE F, et al Thermodynamic analysis on the codeposition of SiC-Si3N4 composite ceramics by chemical vapor deposition using SiCl4-NH3-CH4-H2-Ar mixture gases[J]. Journal of the American Ceramic Society, 2013, 96 (3): 979- 986.
48
LIU Q F, ZHANG L T, LIU J, et al Thermodynamic study on codeposition of ZrC-SiC from MTS-ZrCl4-CH4-H2[J]. Inorganic Materials, 2010, 46 (10): 1090- 1095.
49
LIU X F, ZHANG L T, LIU Y S, et al Thermodynamic calculations on the chemical vapor deposition of Si-C-N from the SiCl4-NH3-C3H6-H2-Ar system[J]. Ceramics International, 2013, 39 (4): 3971- 3977.
50
QU Y N, SU K H, WANG X, et al Reaction pathways of propene pyrolysis[J]. Journal of Computational Chemistry, 2009, 31 (7): 1421- 1442.
ZHAO Chun-nian, CHENG Lai-fei, ZHANG Li-tong, et al In-suit kinetics study in chemical vapor deposition of pyrocarbon from propylene[J]. Journal of Inorganic Materials, 2008, 23 (6): 1165- 1170.
52
GE Y, GORDON M S, BATTAGLIA F, et al Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase[J]. 2. reaction paths and transition states[J]. Journal of Physical Chemistry A, 2007, 111 (8): 1475- 1486.
53
WANG X, SU K H, DENG J L, et al Initial decomposition of methyltrichlorosilane in the chemical vapor deposition of silicon-carbide[J]. Computational and Theoretical Chemistry, 2011, 967 (2-3): 265- 272.
54
LIU Y, SU K H, ZENG Q F, et al Reaction paths of BCl3 + CH4 + H2 in the chemical vapor deposition process[J]. Structural Chemistry, 2012, 23 (6): 1677- 1692.
55
BERJONNEAU J, LANGLAIS F, CHOLLON G, et al Understanding the CVD process of (Si)-B-C ceramics through FTIR spectroscopy gas phase analysis[J]. Surface and Coatings Technology, 2007, 201 (16-17): 7273- 7285.
56
JIANG X Q, SU K H, WANG X, et al An investigation of the lowest reaction pathway of propene+BCl3 decomposition in chemical vapor deposition process[J]. Theoretical Chemistry Accounts, 2010, 127 (5-6): 519- 538.
57
LIU Y S, ZHANG L T, CHENG L F, et al Uniform design and regression analysis of LPCVD boron carbide from BCl3-CH4-H2 system[J]. Applied Surface Science, 2009, 255 (11): 5729- 5735.
58
YANG J H, SU K H, LIU Y, et al New reaction paths of propene + BCl3 decomposition in chemical vapor deposition process[J]. Journal of Theoretical & Computational Chemistry, 2012, 11 (1): 53- 85.
59
TRUHLAR D G, GARRETT B C Variational transition state theory[J]. Annual Review of Physical Chemistry, 1984, 35, 159- 189.
60
GONZALES-LAFONT A, TRUONG T N, TRUHLAR D G Interpolated variational transition-state theory: practical methods for estimating variational transition-state properties and tunneling contributions to chemical reaction rates from electronic structure calculations[J]. The Journal of Chemical Physics, 1991, 95 (12): 8875- 8894.
61
HAN P P, SU K H, WANG Y L, et al Reaction rate of propene pyrolysis[J]. Journal of Computational Chemistry, 2011, 32 (13): 2745- 2755.
62
GE Y, GORDON M S, BATTAGLIA F, et al Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase[J]. 3. reaction rate constant calculations[J]. Journal of Physical Chemistry A, 2010, 114 (6): 2384- 2392.
LIU Yan. Reaction kinetics of H2O-SiC(001) and CH4-BCl3-H2 decomposition system[D]. Xi'an: Northwestern Polytechnical University, 2012.
64
YE F E, ZHANG L T, CHENG L F, et al Effect of temperature on deposition process of boron doped carbon from BCI3-CH4-H2 by chemical vapor deposition[J]. Materials Review, 2010, 24 (7): 108- 115.
65
XIAO J, SU K H, LIU Y, et al Decomposition reaction rate of BCl3-C3H6-H2 in gas phase[J]. Journal of Physical Chemistry A, 2012, 116 (26): 6955- 6966.
66
LIU Y S, ZHANG L T, CHENG Y S, et al Preparation and mechanical properties of carbon fiber reinforced (BCx-SiC)(n) multilayered matrix composites[J]. Applied Composite Materials, 2007, 14 (4): 277- 286.
67
SΦLLING T I, SMITH D M, RADOM L, et al Towards multireference equivalents of the G2 and G3 methods[J]. Journal of Chemical Physics, 2001, 115 (19): 8758- 8772.