Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 102-112    DOI: 10.11868/j.issn.1001-4381.2015.10.016
  综述 本期目录 | 过刊浏览 | 高级检索 |
先驱体制备典型陶瓷(C,SiC和BxC)的化学反应机理研究
张瑾1, 苏克和1,*(), 马咏梅1, 曾庆丰2, 成来飞2, 张立同2
1 西北工业大学 教育部空间应用物理与化学重点实验室, 西安 710129
2 西北工业大学 超高温结构复合材料国家级重点实验室, 西安 710072
Chemical Reaction Mechanism of Typical Ceramics (C, SiC and BxC) Produced from Their Precursors
Jin ZHANG1, Ke-he SU1,*(), Yong-mei MA1, Qing-feng CENG2, Lai-fei CHENG2, Li-tong ZHANG2
1 The Key Laboratory of Space Applied Physics and Chemistry (Ministry of Education), Northwestern Polytechnical University, Xi'an 710129, China
2 Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(4124 KB)   HTML ( 78 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以C3H6(丙烯)+H2,MTS+H2,CH4+BCl3+H2,C3H6(丙烯)+BCl3+H2为先驱体,采用量子力学结合统计热力学、变分过渡态理论和反应动力学等方法,研究制备典型陶瓷(C,SiC和BxC)的化学反应机理。重点阐述用精确量子化学方法获取可能中间体、过渡态的结构与热化学数据、用化学势极小原理确定复杂体系化学平衡规律,以及确定化学反应通道、最佳反应途径、速率常数和反应动力学规律等。为这些陶瓷材料应用于层状碳、抗氧化SiC以及自愈合BxC陶瓷的成分控制和工艺优化提供科学基础的同时,本文也指出理论方法中的不足和改进方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张瑾
苏克和
马咏梅
曾庆丰
成来飞
张立同
关键词 先驱体陶瓷化学反应机理    
Abstract

The chemical reaction mechanism of preparing typical ceramics (C,SiC and BxC) was studied,using C3H6(propylene)+H2, MTS+H2+Ar, CH4+BCl3+H2, and C3H6(propylene)+BCl3+H2 as precursors,and based on the quantum mechanics combined with statistical thermodynamics, variational transition state theory and chemical reaction kinetics. The thermochemistry data are predicted in a prescript high accuracy. The process is to determine as many as possible the reaction intermediates and transition states, to develop their thermochemistry data, to examine the reaction thermodynamics properties of the reaction system, to identify the possible reaction pathways, to evaluate the rate constants of the most favorable paths, and to explore the reaction rates. These researches are scientifically instructive to the composition control and processing optimization for layered carbon, anti-oxidation SiC and self-healing BxC. Problems concerning the theoretical methods are also proposed to be further studied.

Key wordsprecusor    ceramic    chemical reaction mechanism
收稿日期: 2014-02-25      出版日期: 2015-10-17
基金资助:国家自然科学基金资助项目(50572089,50802076);国家重点基础研究发展计划(973计划)(61348)
通讯作者: 苏克和     E-mail: sukehe@nwpu.edu.cn
作者简介: 苏克和(1962-),男,教授,博士生导师,主要从事理论化学及其在材料科学中的应用基础研究,联系地址:西北工业大学理学院(710129),E-mail: sukehe@nwpu.edu.cn
引用本文:   
张瑾, 苏克和, 马咏梅, 曾庆丰, 成来飞, 张立同. 先驱体制备典型陶瓷(C,SiC和BxC)的化学反应机理研究[J]. 材料工程, 2015, 43(10): 102-112.
Jin ZHANG, Ke-he SU, Yong-mei MA, Qing-feng CENG, Lai-fei CHENG, Li-tong ZHANG. Chemical Reaction Mechanism of Typical Ceramics (C, SiC and BxC) Produced from Their Precursors. Journal of Materials Engineering, 2015, 43(10): 102-112.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.016      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/102
Fig.1  以丙烯和H2为先驱体用CVD制备PyC的平衡浓度分布[35]
Fig.2  MTS-H2体系中化学气相沉积凝聚态物质的生成量与反应条件的关系[39]
(a),(b)β-SiC;(c)C(石墨);(d)凝聚相Si
Fig.3  丙烯在298.15K的直接裂解反应通道[50]
Fig.4  丙烯在1200K时分解的最佳反应通道[50]
Fig.5  自由基进攻MTS的初始分解路径[53]
(a)CH3,CH2Cl,CH2Cl2和CCl3自由基进攻MTS;(b)H和Cl自由基进攻MTS;(c)SiCl3,SiHCl2,SiH2Cl和SiH3自由基进攻MTS
Fig.6  1200K时丙烯浓度和丙烯热解反应速率随时间的变化[61]
(a)丙烯浓度;(b)丙烯热解正反应速率
Fig.7  1200~1600K温度范围内反应物浓度随时间的变化(总压为12kPa)[63]
(a)BCl3;(b)CH4
Fig.8  不同温度下产物浓度随时间的变化[64]
(a)BC;(b)B
1 SCHMIDT S, BEYER S, KNABE H, et al Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2003, 55 (3): 409- 420.
2 NASL R Design, preparation and properties of non-oxide CMCS for application in engines and nuclear reactors: An overview: Symposium on multifunctional materials and structures[J]. Composites Science and Technology, 2003, 64 (2): 155- 170.
3 王锟, 陈刘定, 郑翔 平纹编制C/SiC复合材料在室温和高温环境下的拉伸行为[J]. 航空材料学报, 2010, 30 (1): 78- 84.
3 WANG Kun, CHEN Liu-ding, ZHENG Xiang Comparison of tensile behavior of plain-woven carbon/silicon carbide composites at room temperature and high temperature[J]. Journal of Aeronautical Materials, 2010, 30 (1): 78- 84.
4 XU Y D, CHENG L F, ZHANG L T, et al Carbon silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J]. Carbon, 1999, 37 (8): 1179- 1187.
5 QUEMARDA L, REBILLAT F, GUETTE A, et al Self-healing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments[J]. Journal of the European Ceramic Society, 2007, 27 (4): 2085- 2094.
6 周新贵, 张长瑞, 何新波, 等 热解碳涂层碳纤维增强碳化硅复合材料热压工艺研究[J]. 材料工程, 2000, (3): 39- 41.
6 ZHOU Xin-gui, ZHANG Chang-rui, HE Xin-bo, et al A study on the hot press of pyrolysised carbon coated carbon fiber reinforced silicon carbide composite[J]. Journal of Materials Engineering, 2000, (3): 39- 41.
7 焦桓, 周万城, 李翔 CVD法水蒸气条件下制备SiC块体[J]. 材料工程, 2000, (12): 12- 14.
7 JIAO Huan, ZHOU Wan-cheng, LI Xiang Growth rate and deposition process of SiC with water vapor introduced by CVD[J]. Journal of Materials Engineering, 2000, (12): 12- 14.
8 WU S J, CHENG L F, YANG W B, et al Oxidation protective multilayer CVD SiC coatings modified by a graphitic B-C interlayer for 3D C/SiC composite[J]. Applied Composite Materials, 2006, 13 (6): 397- 406.
9 FARIZY G, CHERMANT J L, SANGLEBOEUF J C, et al SiCf-SiBC composites: microstructural investigations of the as received material and creep tested composites under an oxidative environment[J]. Journal of Microscopy-oxford, 2003, 210 (2): 176- 186.
10 张立同, 成来飞, 徐永东, 等 自愈合碳化硅陶瓷基复合材料研究及应用进展[J]. 航空材料学报, 2006, 26 (3): 226- 232.
10 ZHANG Li-tong, CHENG Lai-fei, XU Yong-dong, et al Progress on self-healing silicon carbide ceramic matrix composites and its applications[J]. Journal of Aeronautical Materials, 2006, 26 (3): 226- 232.
11 POPLE J A, HEAD-GORDON M, FOX D J, et al Gaussian-1 theory: a general procedure for prediction of molecular energies[J]. The Journal of Chemical Physics, 1989, 90 (10): 5622- 5629.
12 CURTISS L A, JONES C, TRUCKS G W, et al Gaussian-1 theory of molecular energies for second-row compounds[J]. The Journal of Chemical Physics, 1990, 93 (4): 2537- 2545.
13 CURTISS L A, RAGHAVACHARI K, TRUCKS G W, et al Gaussian-2 theory for molecular energies of first-and second-row compounds[J]. The Journal of Chemical Physics, 1991, 94 (11): 7221- 7230.
14 CURTISS L A, RAGHAVACHARI K, POPLE J A Gaussian-2 theory using reduced møller-pleset orders[J]. The Journal of Chemical Physics, 1993, 98 (2): 1293- 1298.
15 CURTISS L A, CARPENTER J E, RAGHAVACHARI K, et al Validity of additivity approximations used in Gaussian-2 theory[J]. The Journal of Chemical Physics, 1992, 96 (12): 9030- 9034.
16 CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al. Gaussian-3 theory for molecules congaining first and second-row atoms[J]. 1998, 109(18): 7746-7754.
17 CURTISS L A, REDFERN P C, RAGHAVACHARI K, et al Gaussian-3 theory using reduced Møller-Pleset order[J]. The Journal of Chemical Physics, 1999, 110 (10): 4703- 4709.
18 BABOUL A G, CURTISS L A, REDFERN P C, et al Gaussian-3 theory using density functional geometries and zero-point energies[J]. The Journal of Chemical Physics, 1999, 110 (10): 7650- 7657.
19 CURTISS L A, REDFERN P C, RAGHAVACHARI K, et al Assessment of gaussian-3 and density-functional theories on the G3/05 test set of experimental energies[J]. The Journal of Chemical Physics, 2005, 123 (12): 124107- 1-12.
20 CURTISS L A, REDFERN P C, KRISHNAN R Gaussian-4 theory[J]. The Journal of Chemical Physics, 2007, 126 (8): 084108- 1-12.
21 CURTISS L A, REDFERN P C, KRISHNAN R Gaussian-4 theory using reduced order perturbation theory[J]. The Journal of Chemical Physics, 2007, 127 (12): 124105- 1-8.
22 NYDEN M R, PETERSSON G A Complete basis set correlation energies[J]. 1. the asymptotic convergence of pair natural orbital expansions[J]. The Journal of Chemical Physics, 1981, 75 (4): 1843- 1862.
23 PETERSSON G A, BENNETT A, TENSFELDT T G, et al A complete basis set model chemistry[J]. 1. The total energy of closed-shell atoms and hydrides of the first-row elements[J]. The Journal of Chemical Physics, 1988, 89 (4): 2193- 2218.
24 PETERSSON G A, ALLAHAM M A A complete basis set model chemistry[J]. 2. Open-shell systems and the total energies of the first-row atoms[J]. The Journal of Chemical Physics, 1991, 94 (9): 6081- 6090.
25 PETERSSON G A, TENSFELDT T G, MONTGOMERY J A, et al A complete basis set model chemistry[J]. 3. The complete basis set-quadratic configuration interaction family of methods[J]. The Journal of Chemical Physics, 1991, 94 (9): 6091- 6101.
26 MONTGOMERY J A, OCHTERSKI J W, PETERSSON G A A complete basis set model chemistry[J]. 4. an improved atomic pair natural orbital method[J]. The Journal of Chemical Physics, 1994, 101 (7): 5900- 5909.
27 OCHTERSKI J W, PETERSSON G A, MONTGOMERY J A A complete basis set model chemistry[J]. 5. Extensions to six or more heavy atoms[J]. The Journal of Chemical Physics, 1996, 104 (7): 2598- 2619.
28 MONTGOMERY J A, FRISCH M J, OCHTERSKI J W, et al A complete basis set model chemistry[J]. 6. Use of density functional geometries and frequencies[J]. The Journal of Chemical Physics, 1999, 110 (6): 2822- 2827.
29 WOOD G P F, PETERSSON G A, BARNES E C, et al A restricted-open-shell complete-basis-set model chemistry[J]. The Journal of Chemical Physics, 2006, 125 (9): 094106- 1-16.
30 BARNES E C, PETERSSON P A MP2/CBS atomic and molecular benchmarks for H through Ar[J]. The Journal of Chemical Physics, 2010, 132 (11): 114111- 1-9.
31 DUMINDA S R, PETERSSON P A CCSD(T)/CBS atomic and molecular benchmarks for H through Ar[J]. The Journal of Chemical Physics, 2013, 138 (14): 144103- 1-12.
32 GE Y, GORDON M S, BATTAGLIA F, et al Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase[J]. 1. thermodynamics[J]. Journal of Physical Chemistry A, 2007, 111 (8): 1462- 1474.
33 DENG J L, SU K H, ZENG Y, et al Investigation of thermodynamic properties of gaseous SiC(X3Π and a1Σ) with accurate model chemistry calculations[J]. Physical A: Statistical Mechanics and Its Applications, 2008, 387 (22): 5440- 5456.
34 YAO X P, SU K H, DENG J L, et al Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis[J]. Computational Materials Science, 2007, 40 (4): 504- 524.
35 DENG J L, SU K H, YAO X P, et al Erratum to: ''Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis[J]. Computational Materials Science, 2008, 44 (2): 838- 840.
36 DAVID R L. CRC Handbook of Chemistry and Physics, 77th ed[M]. New York: CRC Press, 1996-1997.
37 CHASE M W, DAVIES C A, DOWNEY J R, et al. NIST-JANAF Thermochemical Tables Forth Edition[M]. New York: American Chemical Society and American Institute of Physics, 1998.
38 DENG J L, SU K H, WANG X, et al Thermodynamics of the gas-phase reactions in the chemical vapor deposition of silicon-carbide with methyltrichlorosilane precursor[J]. Theoretical Chemistry Account, 2009, 122 (1-2): 1- 22.
39 DENG J L, SU K H, WANG X, et al Thermodynamics of the production of condensed phases in the chemical vapor deposition process of methyltrichlorosilane pyrolysis[J]. Chemical Vapor Deposition, 2009, 15 (10-15): 281- 290.
40 ZENG Q F, SU K H, ZHANG L T, et al Evaluation of the thermodynamic date of CH3SiCl3 based on quantum chemistry calculations[J]. Journal of Physical and Chemical Reference Date, 2006, 35 (2): 1385- 1390.
41 ZENG Y, SU K H, DENG J L, et al Thermodynamic investigation of the gas-phase reactions in the chemical vapor deposition of boron carbide with BCl3-CH4-H2 precursors[J]. Journal of Molecular Structure Theochem, 2008, 861 (1-3): 103- 116.
42 WANG T, SU K H, DENG J L, et al Reaction thermodynamic in chemical vapor deposition of boron carbide with BCl3-C3H6-H2 precursors[J]. Journal of Theoretical & Computational Chemistry, 2008, 7 (6): 1269- 1312.
43 邓娟利. CVD/CVI制备自愈合SiC陶瓷基复合材料的反应热力学研究[D]. 西安: 西北工业大学, 2009.
43 DENG Juan-li. Thermodynamics of the reaction in the CVD/CVI preparation of the self-healing SiC ceramic matrix composite materials[D]. Xi'an: Northwestern Polytechnical University, 2009.
44 DENG J L, CHENG L F, ZHANG L T, et al Thermodynamics of the production of condensed phases in the chemical vapor deposition process of zirconium diboride with ZrCl4-BCl3-H2 precursors[J]. Thin Solid Films, 2012, 520 (6): 2331- 2335.
45 DENG J L, CHENG L F, ZHANG L T, et al Thermodynamic on study co-deposition of ZrB2-SiC from ZrCl4-BCl3-CH3SiCl3-H2 system[J]. Thin Solid Films, 2012, 520 (23): 7030- 7034.
46 DENG J L, CHENG L F, ZHENG G P, et al Thermodynamics on formation of condensed phases during CVD Si3N4 process with SiCl4-NH3-H2 precursors[J]. Advanced Engineering Materials, 2011, 194-196, 1516- 1523.
47 XUE J M, YIN X W, YE F, et al Thermodynamic analysis on the codeposition of SiC-Si3N4 composite ceramics by chemical vapor deposition using SiCl4-NH3-CH4-H2-Ar mixture gases[J]. Journal of the American Ceramic Society, 2013, 96 (3): 979- 986.
48 LIU Q F, ZHANG L T, LIU J, et al Thermodynamic study on codeposition of ZrC-SiC from MTS-ZrCl4-CH4-H2[J]. Inorganic Materials, 2010, 46 (10): 1090- 1095.
49 LIU X F, ZHANG L T, LIU Y S, et al Thermodynamic calculations on the chemical vapor deposition of Si-C-N from the SiCl4-NH3-C3H6-H2-Ar system[J]. Ceramics International, 2013, 39 (4): 3971- 3977.
50 QU Y N, SU K H, WANG X, et al Reaction pathways of propene pyrolysis[J]. Journal of Computational Chemistry, 2009, 31 (7): 1421- 1442.
51 赵春年, 成飞来, 张立同, 等 丙烯化学气相沉积热解碳的动力学研究[J]. 无机材料学报, 2008, 23 (6): 1165- 1170.
51 ZHAO Chun-nian, CHENG Lai-fei, ZHANG Li-tong, et al In-suit kinetics study in chemical vapor deposition of pyrocarbon from propylene[J]. Journal of Inorganic Materials, 2008, 23 (6): 1165- 1170.
52 GE Y, GORDON M S, BATTAGLIA F, et al Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase[J]. 2. reaction paths and transition states[J]. Journal of Physical Chemistry A, 2007, 111 (8): 1475- 1486.
53 WANG X, SU K H, DENG J L, et al Initial decomposition of methyltrichlorosilane in the chemical vapor deposition of silicon-carbide[J]. Computational and Theoretical Chemistry, 2011, 967 (2-3): 265- 272.
54 LIU Y, SU K H, ZENG Q F, et al Reaction paths of BCl3 + CH4 + H2 in the chemical vapor deposition process[J]. Structural Chemistry, 2012, 23 (6): 1677- 1692.
55 BERJONNEAU J, LANGLAIS F, CHOLLON G, et al Understanding the CVD process of (Si)-B-C ceramics through FTIR spectroscopy gas phase analysis[J]. Surface and Coatings Technology, 2007, 201 (16-17): 7273- 7285.
56 JIANG X Q, SU K H, WANG X, et al An investigation of the lowest reaction pathway of propene+BCl3 decomposition in chemical vapor deposition process[J]. Theoretical Chemistry Accounts, 2010, 127 (5-6): 519- 538.
57 LIU Y S, ZHANG L T, CHENG L F, et al Uniform design and regression analysis of LPCVD boron carbide from BCl3-CH4-H2 system[J]. Applied Surface Science, 2009, 255 (11): 5729- 5735.
58 YANG J H, SU K H, LIU Y, et al New reaction paths of propene + BCl3 decomposition in chemical vapor deposition process[J]. Journal of Theoretical & Computational Chemistry, 2012, 11 (1): 53- 85.
59 TRUHLAR D G, GARRETT B C Variational transition state theory[J]. Annual Review of Physical Chemistry, 1984, 35, 159- 189.
60 GONZALES-LAFONT A, TRUONG T N, TRUHLAR D G Interpolated variational transition-state theory: practical methods for estimating variational transition-state properties and tunneling contributions to chemical reaction rates from electronic structure calculations[J]. The Journal of Chemical Physics, 1991, 95 (12): 8875- 8894.
61 HAN P P, SU K H, WANG Y L, et al Reaction rate of propene pyrolysis[J]. Journal of Computational Chemistry, 2011, 32 (13): 2745- 2755.
62 GE Y, GORDON M S, BATTAGLIA F, et al Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase[J]. 3. reaction rate constant calculations[J]. Journal of Physical Chemistry A, 2010, 114 (6): 2384- 2392.
63 刘艳. H2O-SiC(001)及CH4-BCl3-H2反应动力学研究[D]. 西安: 西北工业大学, 2012.
63 LIU Yan. Reaction kinetics of H2O-SiC(001) and CH4-BCl3-H2 decomposition system[D]. Xi'an: Northwestern Polytechnical University, 2012.
64 YE F E, ZHANG L T, CHENG L F, et al Effect of temperature on deposition process of boron doped carbon from BCI3-CH4-H2 by chemical vapor deposition[J]. Materials Review, 2010, 24 (7): 108- 115.
65 XIAO J, SU K H, LIU Y, et al Decomposition reaction rate of BCl3-C3H6-H2 in gas phase[J]. Journal of Physical Chemistry A, 2012, 116 (26): 6955- 6966.
66 LIU Y S, ZHANG L T, CHENG Y S, et al Preparation and mechanical properties of carbon fiber reinforced (BCx-SiC)(n) multilayered matrix composites[J]. Applied Composite Materials, 2007, 14 (4): 277- 286.
67 SΦLLING T I, SMITH D M, RADOM L, et al Towards multireference equivalents of the G2 and G3 methods[J]. Journal of Chemical Physics, 2001, 115 (19): 8758- 8772.
[1] 董博, 余超, 邓承继, 祝洪喜, 丁军, 唐慧. 碳化硅陶瓷导热性能的研究进展[J]. 材料工程, 2023, 51(1): 64-75.
[2] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[3] 牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江. 熔体自生陶瓷激光直接能量沉积增材制造研究进展[J]. 材料工程, 2022, 50(7): 1-17.
[4] 刘岩松, 李文博, 刘永胜, 曾庆丰. 3D打印陶瓷铸型研究与应用进展[J]. 材料工程, 2022, 50(7): 18-29.
[5] 焦晨, 梁绘昕, 叶昀, 张寒旭, 何志静, 杨友文, 沈理达, 侯锋. 光固化生物陶瓷功能化研究进展[J]. 材料工程, 2022, 50(7): 30-39.
[6] 李文利, 周宏志, 刘卫卫, 于海宁, 王晶, 巩磊, 邢占文. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
[7] 王权威, 王程冬, 鲁中良, 苗恺, 艾子超, 李涤尘. 面向单晶涡轮叶片的氧化硅基陶瓷型芯快速成形性能[J]. 材料工程, 2022, 50(7): 51-58.
[8] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[9] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[10] 罗萌, 向阳, 彭志航, 曹峰. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72.
[11] 李国青, 杨丽霞, 余敏. 生物态碳-陶瓷基复合材料制备方法的研究现状[J]. 材料工程, 2022, 50(10): 1-14.
[12] 张路, 袁芳, 王文清, 董星杰, 何汝杰. 面向一体化热防护的陶瓷基复合材料轻量化结构研究进展与挑战[J]. 材料工程, 2022, 50(10): 15-28.
[13] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[14] 解齐颖, 张祎, 朱阳, 崔红. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.
[15] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn