Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (11): 13-18    DOI: 10.11868/j.issn.1001-4381.2015.11.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
纯钛基体长效超疏水表面的低成本制备
王晨玥, 杨文秀, 张洪敏, 王莼, 汪涛
南京航空航天大学材料科学与技术学院, 南京 210016
Preparation of Durable Superhydrophobic Surface on Pure Titanium Substrate via Low-cost Route
WANG Chen-yue, YANG Wen-xiu, ZHANG Hong-min, WANG Chun, WANG Tao
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(2087 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为降低钛基上超疏水表面的制备成本,提高超疏水表面的耐久性能,以喷砂-阳极氧化法在纯钛基体上构造微纳复合粗糙结构,并使用商用氟碳罩光漆直接对其进行修饰获得超疏水性表面。利用傅里叶变换红外光谱(FTIR),场发射扫描电子显微镜(FE-SEM)和接触角测试等技术对超疏水性表面的化学组成、表面形貌、润湿性和表面耐久性进行了研究。结果表明:喷砂处理在钛基表面构筑微米级凹坑,阳极氧化通过形成网状氧化膜在钛基表面构造纳米级结构,氟碳罩光漆修饰该微纳复合粗糙表面后,为表面引入大量含氟基团,使其获得超疏水性能。超疏水性表面与纯水的静态接触角达162°±2.3°,滚动角为2.1°±0.2°,具有优异的环境耐久性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晨玥
杨文秀
张洪敏
王莼
汪涛
关键词 阳极氧化超疏水氟碳罩光漆    
Abstract:In order to reduce the preparation cost of the superhydrophobic surface on titanium substrate and improve its durability, sandblasting and anodic oxidization were used to construct a micro/nanometer scale rough surface on pure Ti substrate, and then the superhydrophobic surface was obtained via further modification by fluorine carbon varnish. The chemical composition, morphology, wettability and environment durability of the superhydrophobic surface were investigated by FTIR, FE-SEM and contact angle measurement respectively. The results show that the structure at micron level is fabricated by sandblasting while the nano-web structure is prepared by anodizing. After modified by fluorine carbon varnish, this micro/nanometer scale rough surface contained masses of fluoride groups and attains superhydrophobicity. The superhydrophobic surface has a static contact angle of 162°±2.3° with the sliding angle of 2.1°±0.2° and shows excellent air and seawater durability.
Key wordstitanium    anodic oxidization    superhydrophobic    fluorine carbon varnish
收稿日期: 2014-05-07      出版日期: 2015-11-26
中图分类号:  TG174  
通讯作者: 汪涛(1976-),男,教授,博士,研究方向:生物仿生材料、金属表面功能涂层,联系地址:江苏省南京市将军路29号南京航空航天大学材料科学与技术学院(211106),taowang@nuaa.edu.cn     E-mail: taowang@nuaa.edu.cn
引用本文:   
王晨玥, 杨文秀, 张洪敏, 王莼, 汪涛. 纯钛基体长效超疏水表面的低成本制备[J]. 材料工程, 2015, 43(11): 13-18.
WANG Chen-yue, YANG Wen-xiu, ZHANG Hong-min, WANG Chun, WANG Tao. Preparation of Durable Superhydrophobic Surface on Pure Titanium Substrate via Low-cost Route. Journal of Materials Engineering, 2015, 43(11): 13-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.11.003      或      http://jme.biam.ac.cn/CN/Y2015/V43/I11/13
[1] RAHMAWAN Y, XU L, YANG S. Self-assembly of nanostructures towards transparent, superhydrophobic surfaces[J]. Journal of Materials Chemistry A, 2013, 1(9):2955-2969.
[2] 蔡锡松, 肖新颜. 超疏水表面涂层研究进展[J]. 现代化工, 2013, 33(1):22-25, 27. CAI Xi-song, XIAO Xin-yan.Progress in superhydrophobic surfaces coatings[J]. Modern Chemical Industry, 2013, 33(1):22-25, 27.
[3] 江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京:化学工业出版社, 2007.
[4] 徐文骥, 宋金龙, 孙晶, 等. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011,(5):93-98. XU Wen-ji, SONG Jin-long, SUN Jing, et al.Progress in fabrication and application of superhydrophobic surfaces on metal substrates[J]. Journal of Materials Engineering, 2011,(5):93-98.
[5] ZHENG Y M, BAI H, JIANG L, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(8729):640-643.
[6] BHUSHAN B, JUNG Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science, 2011, 56(1):1-108.
[7] 刘圣, 耿兴国, 周晓峰, 等. 铝及铝合金表面超疏水协和涂层的制备与性能研究[J]. 中国表面工程, 2008, 21(3):30-34. LIU Sheng, GENG Xing-guo, ZHOU Xiao-feng, et al. Preparation and properties of super-hydrophobic synergistic coating on aluminum and its alloys[J]. China Surface Engineering, 2008, 21(3):30-34.
[8] ZHANG X, LIANG J, LIU B, et al. Preparation of superhydrophobic zinc coating for corrosion protection[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 454:113-118.
[9] QI Y, CUI Z, LIANG B, et al. A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching[J]. Applied Surface Science, 2014, 305:716-724.
[10] WANG S, FENG L, JIANG L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Advanced Materials, 2006, 18(6):767-770.
[11] WANG T, CHANG L, ZHUANG L, et al. A hierarchical and superhydrophobic ZnO/C surface derived from a rice-leaf template[J]. Monatshefte für Chemie-Chemical Monthly, 2014, 145(1):65-69.
[12] 周思斯, 管自生, 李强, 等. Zn片经水热反应和氟硅烷修饰构建超疏水ZnO表面[J]. 物理化学学报, 2009, 25(8):1593-1598. ZHOU Si-si, GUAN Zi-sheng, LI Qiang, et al. Fabrication of superhydrophobic ZnO surfaces via Zn foil hydrothermal reactions and fluoroalkylsilane modified process[J]. Acta Physico-Chimica Sinica, 2009, 25(8):1593-1598.
[13] SONG X, ZHAI J, WANG Y, et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J]. The Journal of Physical Chemistry:B, 2005, 109(9):4048-4052.
[14] NAYAK B K, CAFFREY P O, SPECK C R, et al. Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Applied Surface Science, 2013, 266:27-32.
[15] STEELE A, NAYAK B K, DAVIS A, et al. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing[J]. Journal of Micromechanics and Microengineering, 2013, 23(11):115012.
[16] GUO M, KANG Z, LI W, et al. A facile approach to fabricate a stable superhydrophobic film with switchable water adhesion on titanium surface[J]. Surface and Coatings Technology, 2014, 239:227-232.
[17] BARTHWAL S, KIM Y S, LIM S H. Fabrication of amphiphobic surface by using titanium anodization for large-area three-dimensional substrates[J]. Journal of Colloid and Interface Science, 2013, 400:123-129.
[18] FLEMING R A, ZOU M. Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability[J]. Applied Surface Science, 2013, 280:820-827.
[19] SALEEMA N, SARKAR D K, GALLANT D, et al. Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium[J]. ACS Applied Materials and Interfaces, 2011, 3(12):4775-4781.
[20] ISHIZAKI T, MASUDA Y, SAKAMOTO M. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution[J]. Langmuir, 2011, 27(8):4780-4788.
[21] SARKAR D K, FARZANEH M, PAYNTER R W. Superhydrophobic properties of ultrathin rf-sputtered Teflon films coated etched aluminum surfaces[J]. Materials Letters, 2008, 62(8-9):1226-1229.
[22] MARMUR A. Solid-surface characterization by wetting[J]. Annual Review of Materials Research, 2009, 39:473-489.
[23] QUÉRÉ. Wetting and roughness[J]. Annual Review of Materials Research, 2008, 38:71-99.
[24] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry Research, 1936, 28(8):988-994.
[25] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Journal of the Chemical Society, 1944, 40:546-551.
[1] 王欣, 许春玲, 李臻熙, 裴传虎, 汤智慧. 喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响[J]. 材料工程, 2020, 48(9): 138-143.
[2] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[3] 杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
[4] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[5] 刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
[6] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[7] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[8] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[9] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[10] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[11] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[12] 李贺希, 陈静飞, 卢聪, 屈秀文, 项丰顺. 光催化降解化学毒剂研究进展[J]. 材料工程, 2020, 48(11): 9-24.
[13] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[14] 李涛, 李慧敏, 卢松涛, 吴晓宏. 炭黑/黑色TiO2复合材料的制备及其光催化性能[J]. 材料工程, 2020, 48(11): 39-45.
[15] 吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 二氧化硅掺杂对二氧化钛晶型转变机理的影响[J]. 材料工程, 2020, 48(11): 99-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn