Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (11): 32-38    DOI: 10.11868/j.issn.1001-4381.2015.11.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
基于最大m值法和恒应变速率法的Ti3Al基合金超塑变形行为研究
付明杰, 许慧元, 刘佳佳, 韩秀全
北京航空制造工程研究所金属成形技术研究室, 北京 100024
Superplastic Deformation Behavior of Ti3Al Based Alloy Based on Maximum m Value and Constant Strain Rate Method
FU Ming-jie, XU Hui-yuan, LIU Jia-jia, HAN Xiu-quan
Metal Forming Technology Department, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China
全文: PDF(12471 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 分别采用最大m值法和恒应变速率法对Ti-24Al-15Nb-1.5Mo合金板材进行超塑拉伸,研究了940~1000℃、5.5×10-5~1.7×10-3s-1和不同拉伸轴方向的超塑性变形行为。结果表明:采用最大m值法获得的伸长率均高于恒应变速率法的,分别在980℃、垂直轧制方向获得了1596%的最大伸长率和960℃、3.3×10-4s-1、与轧制方向成45°获得了932%的伸长率。原始纤维组织经过超塑变形后发生等轴化,并且等轴晶粒随着应变速率的减小和温度的升高,长大程度逐渐增大。最大m值法超塑拉伸可以明显减少孔洞的产生。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付明杰
许慧元
刘佳佳
韩秀全
关键词 Ti3Al板材超塑性晶粒等轴化孔洞    
Abstract:The superplastic deformation behavior of Ti-24Al-15Nb-1.5Mo alloy with two different methods of based on maximum m value and constant strain rate was studied over the range of 940-1000℃, 5.5×10-5-1.7×10-3s-1 and different tensile axis direction. The result shows that the maximum superplastic elongation of maximum m value is higher than that of the constant strain rate method, and 1596% and 932% are obtained, respectively, at 980℃, T direction and 960℃, 3.3×10-4s-1, 45° to rolling direction, respectively. The elongated grain of primary microstructure will be transformed to equiaxed grain during superplastic tension and the equiaxed grain size increases with decreasing of strain rate and increasing of deformation temperature. The maximum m value method can obviously reduce the generation of cavities.
Key wordsTi3Al alloy sheet    superplasticity    equiaxed grain    cavity
收稿日期: 2014-05-10      出版日期: 2015-11-26
中图分类号:  TG146  
通讯作者: 付明杰(1981-),男,博士,高级工程师,主要从事高温钛合金、金属间化合物、高温合金的超塑成形/扩散连接工艺及基础理论研究工作,联系地址:北京市340信箱106分箱(100024),fumj@bamtri.com     E-mail: fumj@bamtri.com
引用本文:   
付明杰, 许慧元, 刘佳佳, 韩秀全. 基于最大m值法和恒应变速率法的Ti3Al基合金超塑变形行为研究[J]. 材料工程, 2015, 43(11): 32-38.
FU Ming-jie, XU Hui-yuan, LIU Jia-jia, HAN Xiu-quan. Superplastic Deformation Behavior of Ti3Al Based Alloy Based on Maximum m Value and Constant Strain Rate Method. Journal of Materials Engineering, 2015, 43(11): 32-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.11.006      或      http://jme.biam.ac.cn/CN/Y2015/V43/I11/32
[1] 李世琼, 张建伟, 程云君, 等. Ti3Al和Ti2AlNb基金属间化合物结构材料研究发展现状[J].稀有金属材料与工程,2005,34(增刊3):104-109. LI S Q, ZHANG J W, CHENG Y J, et al. Current status on development of Ti3Al and Ti2AlNb intermetallic structural materials[J]. Rare Metal Materials and Engineering, 2005,34(Suppl 3):104-109.
[2] 张建伟, 李世琼, 梁晓波, 等. Ti3Al和Ti2AlNb基合金的研究与应用[J]. 中国有色金属学报, 2010, 20(增刊1):336-341. ZHANG J W, LI S Q, LIANG X B, et al. Research and application of Ti3Al and Ti2AlNb based alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(Suppl 1):336-341.
[3] 杜兴蒿, 郭建亭, 周彼德. 单相组织金属间化合物的超塑性行为[J]. 钢铁研究学报, 2001, 13(6):52-55. DU X H, GUO J T, ZHOU B D. Superplastic behavior of single-phase intermetallic compound[J]. Journal of Iron and Steel Research, 2001,13(6):52-55.
[4] ABHIJIT D, DIPANKAR B. Superplastic behaviour in a Ti3Al-Nb alloy[J]. Scripta Metallurgica, 1990,24:1319-1322.
[5] YANG H S, JIN P, MUKHERJEE A K. Superplastic behavior of regular α2 and super α2 titanium aluminides[J]. Materials Science and Engineering:A, 1992,153:457-464.
[6] YANG H S, JIN P, DALDER E, et al. Superplasticity in Ti3Al based alloy stabilized by Nb[J]. Scr Metall Mater, 1991,25:1223-1227.
[7] YANG H S, ZELIN M G, VALIEV R Z, et al. Strain induced morphological changes of α2 and β phases in Ti3Al alloys during superplastic deformation[J]. Scripta Metallurgic, 1992,26:1707-1712.
[8] SPINGARN J R, NIX W D. Diffusional creep and diffusionally accommondated grain rearrangement[J]. Acta Metallurgica, 1998,26(9):1389-1398.
[9] PILLING J, RIDLEY N, ISLAM M F. On the modeling of diffusion bonding in materials:superplastic super alpha-2[J]. Materials Science and Engineering:A, 1996,205:72-78.
[10] IMAYEV R M, GABDULLIN N W, SALISHCHEV G A. Effect of grain size on superplasticity of an intermetallic Ti3Al compound[J]. Intermetallics, 1997,5(3):229-236.
[11] FU H C, HUANG J C, WANG T D, et al. Evolution of microstructure and superplastic deformation mechanism in super α2-Ti3Al base alloys[J]. Acta Mater, 1998, 46(2):465-479.
[12] KIM J H, PARK C G, HA T K, et al. Microscopic observation of superplastic deformation in a2-phase Ti3Al-Nb alloy[J]. Materials Science and Engineering:A, 1999,269:197-204.
[13] SALISHCHEV G A, IMAYEV R M, SENKOV O N, et al. Formation of a submicrocrystalline structure in TiAl and Ti3Al intermetallics by hot working[J]. Materials Science and Engineering:A, 2000,286:236-243.
[14] 刘莹莹, 姚泽坤, 罗茜, 等. Ti-24Al-15Nb-1.5Mo合金的超塑性能及超塑变形时的组织演化[J]. 稀有金属材料与工程, 2008,37(1):14-18. LIU Y Y, YAO Z K, LUO X, et al. Superplastic properties and microstructural evolution during superplastic tension of Ti-24Al-15Nb-1.5Mo Alloy[J]. Rare Metal Materials and Engineering, 2008,37(1):14-18.
[15] 王旭, 曹京霞, 黄旭. Ti3Al基合金板材的超塑性研究[J]. 航空材料学报, 2012,32(1):20-24. WANG X, CAO J X, HUANG X. Investigation on superplasticity of Ti3Al alloy sheet[J]. Journal of Aeronautical Materials, 2012,32(1):20-24.
[16] 王高潮,曹春晓,董洪波,等. TC11合金最大m值超塑变形机理研究[J]. 航空学报, 2009,20(2):357-361. WANG G C, CAO C X, DONG H B, et al. Superplastic deformation mechanism of titanium alloy TC11 at maximum m value[J].Acta Aeronautica et Astronautica Sinica,2009,20(2):357-361.
[17] 夏春林, 王高潮, 邓同生, 等. 基于最大m值法的TC4钛合金应变诱发超塑性变形工艺[J]. 机械工程材料, 2011,35(6):45-48. XIA C L, WANG G C, DENG T S, et al. Strain-induced superplastic deformation process of TC4 titanium alloy based on maximum m value method[J]. Materials for Mechanical Engineering, 2011,35(6):45-48.
[18] STOWELL M J, LIVESEY D W, RIDLEY N. Cavity coalescence in superplastic deformation[J]. Acta Metallurgica, 1984,32(1):35-42.
[1] 黄敏, 张功, 王栋, 李辉, 董加胜, 楼琅洪. 复杂镍基单晶铸件显微孔洞的形成机理[J]. 材料工程, 2020, 48(2): 123-132.
[2] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[3] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[4] 叶凌英, 杨栋, 李红萍, 张新明, 廖荣跃. 5A90铝锂合金超塑性变形机理的定量研究[J]. 材料工程, 2019, 47(11): 163-170.
[5] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[6] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
[7] 陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
[8] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[9] 张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
[10] 郑漫庆, 王高潮, 徐雪峰, 喻淼真. TC4-DT合金的超塑性变形及其本构方程[J]. 材料工程, 2014, 0(9): 63-67.
[11] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[12] 王淑云, 张敏聪, 东赟鹏, 刘趁意, 陈由红, 孙兴. FGH96合金热挤压棒材超塑性研究[J]. 材料工程, 2012, 0(7): 24-28.
[13] 莫德锋, 何国求, 胡正飞, 张卫华. 孔洞对铸造铝合金疲劳性能的影响[J]. 材料工程, 2010, 0(7): 92-96.
[14] 张蕾, 滕俊飞, 侯金保. 置氢质量分数0.4% Ti600合金扩散连接[J]. 材料工程, 2008, 0(9): 28-31.
[15] 刘莹莹, 姚泽坤, 郭鸿镇. Ti3Al金属间化合物超塑性的研究进展[J]. 材料工程, 2008, 0(4): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn