The superplastic deformation behavior of Ti-24Al-15Nb-1.5Mo alloy with two different methods of based on maximum m value and constant strain rate was studied over the range of 940-1000℃, 5.5×10-5-1.7×10-3s-1 and different tensile axis direction. The result shows that the maximum superplastic elongation of maximum m value is higher than that of the constant strain rate method, and 1596% and 932% are obtained, respectively, at 980℃, T direction and 960℃, 3.3×10-4s-1, 45° to rolling direction, respectively. The elongated grain of primary microstructure will be transformed to equiaxed grain during superplastic tension and the equiaxed grain size increases with decreasing of strain rate and increasing of deformation temperature. The maximum m value method can obviously reduce the generation of cavities.
付明杰, 许慧元, 刘佳佳, 韩秀全. 基于最大m值法和恒应变速率法的Ti3Al基合金超塑变形行为研究[J]. 材料工程, 2015, 43(11): 32-38.
Ming-jie FU, Hui-yuan XU, Jia-jia LIU, Xiu-quan HAN. Superplastic Deformation Behavior of Ti3Al Based Alloy Based on Maximum m Value and Constant Strain Rate Method. Journal of Materials Engineering, 2015, 43(11): 32-38.
LI S Q, ZHANG J W, CHENG Y J, et al Current status on development of Ti3Al and Ti2AlNb intermetallic structural materials[J]. Rare Metal Materials and Engineering, 2005, 34 (Suppl3): 104- 109.
ZHANG J W, LI S Q, LIANG X B, et al Research and application of Ti3Al and Ti2AlNb based alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20 (Suppl1): 336- 341.
DU X H, GUO J T, ZHOU B D Superplastic behavior of single-phase intermetallic compound[J]. Journal of Iron and Steel Research, 2001, 13 (6): 52- 55.
4
ABHIJIT D, DIPANKAR B Superplastic behaviour in a Ti3Al-Nb alloy[J]. Scripta Metallurgica, 1990, 24, 1319- 1322.
5
YANG H S, JIN P, MUKHERJEE A K Superplastic behavior of regular α2 and super α2 titanium aluminides[J]. Materials Science and Engineering: A, 1992, 153, 457- 464.
6
YANG H S, JIN P, DALDER E, et al Superplasticity in Ti3Al based alloy stabilized by Nb[J]. Scr Metall Mater, 1991, 25, 1223- 1227.
7
YANG H S, ZELIN M G, VALIEV R Z, et al Strain induced morphological changes of α2 and β phases in Ti3Al alloys during superplastic deformation[J]. Scripta Metallurgic, 1992, 26, 1707- 1712.
8
SPINGARN J R, NIX W D Diffusional creep and diffusionally accommondated grain rearrangement[J]. Acta Metallurgica, 1998, 26 (9): 1389- 1398.
9
PILLING J, RIDLEY N, ISLAM M F On the modeling of diffusion bonding in materials: superplastic super alpha-2[J]. Materials Science and Engineering: A, 1996, 205, 72- 78.
10
IMAYEV R M, GABDULLIN N W, SALISHCHEV G A Effect of grain size on superplasticity of an intermetallic Ti3Al compound[J]. Intermetallics, 1997, 5 (3): 229- 236.
11
FU H C, HUANG J C, WANG T D, et al Evolution of microstructure and superplastic deformation mechanism in super α2-Ti3Al base alloys[J]. Acta Mater, 1998, 46 (2): 465- 479.
12
KIM J H, PARK C G, HA T K, et al Microscopic observation of superplastic deformation in a2-phase Ti3Al-Nb alloy[J]. Materials Science and Engineering: A, 1999, 269, 197- 204.
13
SALISHCHEV G A, IMAYEV R M, SENKOV O N, et al Formation of a submicrocrystalline structure in TiAl and Ti3Al intermetallics by hot working[J]. Materials Science and Engineering: A, 2000, 286, 236- 243.
LIU Y Y, YAO Z K, LUO X, et al Superplastic properties and microstructural evolution during superplastic tension of Ti-24Al-15Nb-1[J]. 5Mo Alloy[J]. Rare Metal Materials and Engineering, 2008, 37 (1): 14- 18.
WANG G C, CAO C X, DONG H B, et al Superplastic deformation mechanism of titanium alloy TC11 at maximum m value[J]. Acta Aeronautica et Astronautica Sinica, 2009, 20 (2): 357- 361.
XIA C L, WANG G C, DENG T S, et al Strain-induced superplastic deformation process of TC4 titanium alloy based on maximum m value method[J]. Materials for Mechanical Engineering, 2011, 35 (6): 45- 48.
18
STOWELL M J, LIVESEY D W, RIDLEY N Cavity coalescence in superplastic deformation[J]. Acta Metallurgica, 1984, 32 (1): 35- 42.