Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (11): 50-56    DOI: 10.11868/j.issn.1001-4381.2015.11.009
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
不同厚度纳米Ti薄膜的力学性能
王海斗1, 董美伶1,2, 崔秀芳2, 邢志国1, 朱丽娜3, 刘金娜1,2
1. 装甲兵工程学院装备再制造技术国防科技重点实验室, 北京 100072;
2. 哈尔滨工程大学材料科学与化学工程学院, 哈尔滨 150001;
3. 中国地质大学(北京)工程技术学院, 北京 100083
Mechanical Properties of Nano Ti Films with Different Thickness
WANG Hai-dou1, DONG Mei-ling1,2, CUI Xiu-fang2, XING Zhi-guo1, ZHU Li-na3, LIU Jin-na1,2
1. National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China;
2. School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
3. School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
全文: PDF(3329 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过直流磁控溅射方法制备出四个不同厚度的纳米Ti薄膜,并分别采用纳米压痕仪、电子薄膜应力分布测试仪研究了Ti薄膜的力学性能和残余应力大小,结合分形维数方法和原子力显微镜对薄膜表面粗糙度和表面形貌进行了分析。实验结果表明:随Ti薄膜厚度的增加,薄膜晶粒尺寸逐渐增大,表面粗糙度和残余应力值随厚度的增加先增大后减小,而Ti薄膜弹性模量和硬度随薄膜厚度增加呈现出先减小随后增大的趋势。当薄膜厚度为600,2400,3600nm时薄膜中存在残余压应力,厚度为1200nm时存在残余拉应力,薄膜中残余应力分布最为均匀,但此时薄膜具有较低的硬度和弹性模量值。分析得出Ti薄膜中存在残余拉应力会使薄膜硬度和弹性模量值变小,残余压应力反之。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王海斗
董美伶
崔秀芳
邢志国
朱丽娜
刘金娜
关键词 薄膜纳米压痕分形维数力学性能    
Abstract:Four nano-Ti films with different thickness were deposited by direct current magnetron sputtering(DCMS). The mechanical properties and residual stress of the deposited Ti films were studied using nano indentation and electronic film stress distribution tester, surface roughness and surface morphology were analyzed using fractal dimension and the atomic force microscopy(AFM) respectively. The results show that, with the increase of the film thickness, the Ti crystal grain size increases gradually and both the surface roughness and residual stress increase first and then decrease, while the hardness and elastic modulus exhibit the opposite tendency. When the thickness of the deposited films is 600, 2400nm and 3600nm, the residual compressive stress exists; when the film thickness is 1200nm, the residual tensile stress exists, the distribution of residual stress is most uniform, when the residual tensile stress exists in the thin films, but the hardness and elastic modulus are lower. The analysis shows that residual tensile stress results in the decrease of the hardness and elastic modulus in Ti thin films, the residual compressive stress exhibits an opposite trend.
Key wordsfilm    nanoindentation    fractal dimension    mechanical property
收稿日期: 2014-04-17      出版日期: 2015-11-26
中图分类号:  TG133.25  
通讯作者: 王海斗(1969-),男,教授,从事表面工程、再制造的寿命预测等研究,联系地址:北京市丰台区杜家坎21号装甲兵工程学院(100072),wanghaidou@aliyun.com     E-mail: wanghaidou@aliyun.com
引用本文:   
王海斗, 董美伶, 崔秀芳, 邢志国, 朱丽娜, 刘金娜. 不同厚度纳米Ti薄膜的力学性能[J]. 材料工程, 2015, 43(11): 50-56.
WANG Hai-dou, DONG Mei-ling, CUI Xiu-fang, XING Zhi-guo, ZHU Li-na, LIU Jin-na. Mechanical Properties of Nano Ti Films with Different Thickness. Journal of Materials Engineering, 2015, 43(11): 50-56.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.11.009      或      http://jme.biam.ac.cn/CN/Y2015/V43/I11/50
[1] DUMONT E, DUGNOILLE B, PEITJEAN J P, et al. Optical properties of nickel thin films deposited by electroless plating[J]. Thin Solid Films, 1997, 301(1):149-153.
[2] 夏冬生, 张会臣, 孙昌国, 等. 离子束增强沉积Ni, Ti 纳米金属薄膜的表面形貌与摩擦特性研究[J]. 润滑与密封, 2007, 32(4):97-101. XIA Dong-sheng, ZHANG Hui-chen, SUN Chang-guo, et al. Study on topography and friction properties of nanometer metallic coatings[J]. Lubrication Engineering, 2007, 32(4):97-101.
[3] NAPLOSEZK-BILNIK I, BUDNIOK A, LOSIEWICZ B, et al. Electrodeposition of composite Ni-based coatings with the addition of Ti or/and Al particles[J]. Thin Solid Films, 2005, 474(1):146-153.
[4] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1538-1564.
[5] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1):3-20
[6] 王红美, 徐滨士, 马世宁,等. 纳米压痕法测试电刷镀镍镀层的硬度和弹性模量[J]. 机械工程学报, 2005, 41(4):128-131. WANG Hong-mei, XU Bin-shi, MA Shi-ning, et al. Hardness and modulus of elasticity of brush plated nickle coating by nanoindentation testing[J]. Chinese Journal of Mechanical Engineering, 2005, 41(4):128-131.
[7] DOERNER M F, NIX W D. A method for interpreting the data from depth-sensing indentation instruments[J]. Journal of Materials Research, 1986, 1(4):601-609.
[8] 吴化, 陈涛, 宋力. PVD 法制备(Ti, Al) N 涂层中残余应力对其质量的影响[J]. 材料工程, 2013,(2):60-64. WU Hua, CHEN Tao, SONG Li. Effects of residual stress on quality of(Ti,Al)N coatings deposited by PVD method[J]. Journal of Materials Engineering, 2013,(2):60-64.
[9] MORRIS M, WALDHEIM L. Energy recovery from solid waste fuels using advanced gasification technology[J]. Waste Management, 1998, 18(6):557-564.
[10] 李远士, 牛焱, 吴维,等. Fe-Cr合金在450℃的KCl及KCl-ZnCl2盐膜中的腐蚀[J]. 金属学报, 2001, 37(9):961-964. LI Yuan-shi, NIU Yan, WU Wei, et al. Corrosion behaviors of Fe-Cr alloys induced by KCl and KCl-ZnCl2at 450℃[J]. Acta Metallurgica Sinica, 2001, 37(9):961-964.
[11] 王成, 张贵彦, 马莹, 等. 薄膜应力测量方法研究[J]. 激光与光电子学进展, 2005, 41(9):28-32. WANG Cheng, ZHANG Gui-yan, MA Ying, et al. Study of thin film stress measurements[J]. Laser and Optoelectronics Progress, 2005, 41(9):28-32.
[12] STARMAN L, COUTU J R. Stress monitoring of post-processed MEMS silicon microbridge structures using Raman spectroscopy[J]. Experimental Mechanics, 2012, 52(9):1341-1353.
[13] 王海斗,朱丽娜,邢志国. 表面残余应力检测技术[M]. 北京:机械工业出版社, 2013. 31-53. WANG Hai-dou, ZHU Li-na, XING Zhi-guo. The Technology of Surface Residual Stress Testing[M]. Beijing:China Machine Press, 2013. 31-53.
[14] 胡望宇, 管恒荣, 孙晓峰,等. ZrO2-Ni等离子喷涂涂层的残余应力[J]. 材料工程, 1999,(2):3-5. HU Wang-yu, GUAN Heng-rong, SUN Xiao-feng, et al. Residual stress of ZrO2-Ni coatings prepared by plasma spraying[J]. Journal of Materials Engineering, 1999,(2):3-5.
[15] SERGEJEV F, KIMMARI E, VILIUS M. Residual stresses in TiC-based cermets measured by indentation[J]. Physics Engineering, 2011, 10:2873-2881.
[16] 毛卫国, 陈强, 张斌, 等. 等离子喷涂热障涂层材料弹性模量与硬度的压痕测试分析[J].材料工程,2011,(10):66-71. MAO Wei-guo, CHEN Qiang, ZHANG Bin, et al. Investigations of elastic modulus and hardness of air plasma sprayed thermal barrier coatings by nanoindentation method[J]. Journal of Materials Engineering, 2011,(10):66-71.
[17] 张泰华. 微/纳米力学性能测试技术及其应用[M]. 北京:机械工业出版社, 2005.21-23. ZHANG Tai-hua.The Technology of Micro/Nano Mechanical Properties Testing and its Application[M]. Beijing:China Machine Press, 2005.21-23.
[18] 曹猛, 李强, 杨莹,等. 离子束流和基底温度对 ZrN/TiAlN 纳米多层膜性能的影响[J]. 真空科学与技术学报, 2008, 28(增刊1):29-32. CAO Meng, LI Qing, YANG Ying, et al. Deposition conditions and mechanical properties of ZrN/TiA1N nanoscaled multilayered coatings[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(Suppl 1):29-32.
[19] ABDUL KHADAR M, MOHEMMED SHANID N A. Nanoscale fine-structure evaluation of RF magnetron sputtered anatase films using HRTEM, AFM, micro-Raman spectroscopy and fractal analysis[J]. Surface and Coatings Technology, 2010, 204(9):1366-1374.
[20] GUESSASMA S, MONTAVON G, CODDET C. On the implementation of the fractal concept to quantify thermal spray deposit surface characteristics[J]. Surface and Coatings Technology, 2003, 173(1):24-38.
[21] RIVETT B, KOROLEVA E V, GARCIA-GARCUA F J, et al. Surface topography evolution through production of aluminium offset lithographic plates[J]. Wear, 2011, 270(3):204-217.
[22] CHEN X H, WANG D W. Fractal and spectral analysis of aggregate surface profile in polishing process[J]. Wear, 2011, 271(11):2746-2750.
[23] TANG W, WANG Y. Fractal characterization of impact fracture surface of steel[J]. Applied Surface Science, 2012, 258(10):4777-4781.
[24] ZHANG X C, XU B S, WU Y X, et al. Porosity, mechanical properties, residual stresses of supersonic plasma-sprayed Ni-based alloy coatings prepared at different powder feed rates[J]. Applied Surface Science, 2008, 254(13):3879-3889.
[25] KWASNY W, DOBRZANSKI L A, PAWLYTA M, et al. Fractal nature of surface topography and physical properties of the coatings obtained using magnetron sputtering[J]. Journal of Materials Processing Technology, 2004, 157:188-193.
[26] WANG Y, XU K W. Cu-W thin film characterized by surface fractal and resistivity[J]. Acta Physica Sinica, 2004, 53(3):900-904.
[27] SURESH S, GIANNAKOPOULS A E. A new method for estimating residual stresses by instrumented sharp indentation[J]. Acta Materialia, 1998, 46(16):5755-5767.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 刘峰峰, 李玉雄, 隋展鹏, 蔡勇, 张永红, 蒋春萍. 非晶AlBN介质薄膜的制备及相关特性研究[J]. 材料工程, 2020, 48(6): 112-117.
[7] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[8] 邓培淼, 宁洪龙, 谢伟广, 刘贤哲, 邓宇熹, 姚日晖, 彭俊彪. 氧化亚锡薄膜晶体管的研究进展[J]. 材料工程, 2020, 48(4): 83-88.
[9] 杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
[10] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[11] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[12] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[13] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[14] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[15] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn