Al-Fe-V-Si heat resistant alloys prepared by rapid solidification exhibit excellent thermal stability which can be ascribed to the obtained second phase particles of fine dispersoids and with low diffusibility. This paper reviewed the development history of Al-Fe-V-Si alloys. The preparation processes, microstructural control and strengthening measures were especially introduced. The problems met in the development of the alloys were analyzed emphatically and the future development should be focused on the optimization of process and the improvement of thermal stability.
The centrifugal force throws the molten alloy as the form of strip,then the strip pulverize with a thin,degassing,consolidation forming,as shown in fig.1(a)[13]
105-106 K/s
α-AlAl12(Fe,V)3Si
High cooling rates,excellent fatigue strength and fracture toughness but the process is complicated and the production cost is high[14]
Gas atomization
The melt is broken into small droplets under high pressure and rapidly cooled into powders by thermal convection,as shown in fig.1(b)[15]
103-104 K/s
α-AlAl8Fe2SiAl12(Fe,V)3Si
It’s very useful in the preparation of small components but the manufacturing process will produce some harmful brittle phase[16, 17]
Spray deposition
The melt is atomized into droplets by inert gas,then sprayed into the substrate,as shown in fig.1(c)[18]
About 103 K/s
α-AlAl8Fe2SiAl12(Fe,V)3SiAl13Fe4
It can control oxygen content effectively but its cooling rate is low,resulting in property are lower than that of other methods
Table 1 不同制备工艺对比
Fig.2 快速凝固Al-Fe-V-Si合金TEM图像
Fig.3 425℃不同体系快速凝固耐热铝合金弥散相粗化率[20]
Alloy
Cooling rate/(K·s -1)
1
10
10 2
10 3
10 4
10 5
Al-8.5Fe
α-Al,Al 13Fe 4
α-Al,Al 13Fe 4
α-Al,Al 13Fe 4
α-Al,Al 6Fe,Al mFe
α-Al,Al 6Fe,Al mFe
α-Al,Al mFe
Al-8.5Fe-1.7Si
α-Al,Al 8Fe 2Si,Al 3(Fe,Si)
α-Al,Al 8Fe 2Si,Al 3(Fe,Si)
α-Al,Al 13Fe 4,Al 8Fe 2Si,Al 12Fe 3Si
α-Al,Al 8Fe 2Si,Al 12Fe 3Si
α-Al,Al 8Fe 2Si,Al 12Fe 3Si
α-Al,Al 12Fe 3Si
Al-8.5Fe-1.3V-1.7Si
α-Al,Al 8Fe 2Si,Al 3(Fe,V.Si)
α-Al,Al 8Fe 2Si,Al 3(Fe,V,Si)
α-Al,Al 3(Fe,V,Si),Al 8(Fe,V) 2Si,Al 12(Fe,V) 3Si
α-Al,Al 8Fe 2Si,Al 12(Fe,V) 3Si
α-Al,Al 8Fe 2Si,Al 12(Fe,V) 3Si
α-Al,Al 12(Fe,V) 3Si
Table 2 不同冷速下三种Al-Fe-X系合金的相组成[23, 24]
Research institute
Composition
Room temperature(25℃)
Elevated temperature(315℃)
σ 0.2/MPa
σ b/MPa
δ/%
σ 0.2/MPa
σ b/MPa
δ/%
Alcoa
Al-8Fe-6Ce
457
564
8.0
225
271
7.3
Pratt&Whitney
Al-8Fe-2Mo-1V
393
512
3.0
208
237
9.7
Alcan
Al-4.5Cr-1.5Zr-1.2Mn
486
536
7.7
214
235
-
Allied Singal
Al-5.5Fe-0.5V-1.0Si
310
352
16.7
172
193
17.3
Allied Singal
Al-8.5Fe-1.3V-1.7Si
414
462
12.9
255
276
11.9
Allied Singal
Al-11.7Fe-1.15V-2.4Si
531
559
7.2
297
303
6.8
Research Institute for Nonferrous Metals
Al-8.5Fe-1.1V-1.9Si
398
445
16
209
229
7
Central South University
Al-8.5Fe-1.3V-1.7Si
412
458
8.6
189 a
204 a
8.9 a
Note: a-350℃
Table 3 快速凝固耐热铝合金的力学性能[18, 27, 28]
Fig.4 铝合金断裂韧性对比[29]
Alloy
σ0.2/MPa
σb/MPa
δ/%
25℃
350℃
25℃
350℃
25℃
350℃
FVS0812
435
204
330
181
14
7
FVS0812+3TiC
482
224
427
191
15
7
Table 4 TiC对FVS0812合金力学性能影响[30]
Alloy
Room temperature(25℃)
Elevated temperature(350℃)
σ0.2/MPa
σb/MPa
δF/%
σ0.2/MPa
σb/MPa
δ5/%
Al-Fe-V-Si
350±4
491±5
1.9±0.1
157±8
190±10
5.5±0.4
Al-Fe-V-Si+20SiC
-
395
0.6
166
172
-
Table 5 SiC对FVS0812合金力学性能影响[33]
Alloy
Room temperature(25℃)
Elevated temperature(350℃)
σ0.2/MPa
σb/MPa
δ/%
σ0.2/MPa
σb/MPa
δ/%
FVS0812+Er
357
394
13.3
155
162
6.8
FVS0812
388
420
6.9
137
171
4.2
Table 6 Er元素对FVS0812合金力学性能影响[38]
1
DAS S K, BYE R L, GILMAN P S Large scale manufacturing of rapidly solidified aluminum alloys[J]. Materials Science and Engineering: A, 1991, 134, 1103- 1106.
2
KIM Y W Advanced aluminum alloys for high temperature structural applications[J]. Industrial Heating, 1988, 5, 31- 34.
3
XIAO Y D, LI S R, XIE Y N Consolidation processing and mechanical properties of rapidly solidified Al-Fe-Cr-Zr heat-resistant aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 1995, 5 (2): 128- 131.
4
LEE S, LEE D Y, KIM N J Correlation of microstructure and fracture toughness of a rapid solidification-powder metallurgy Al-Fe-V-Si alloy[J]. Materials Science and Engineering: A, 1991, 147, 33- 44.
LI Wei, LI Pei-yong Effects of powder particle size on microstructure and properties of RS P/M Al-Fe-Mo-Si/Zn-Al composites[J]. Journal of Aeronautical Materials, 2006, 26 (2): 12- 15.
ZHAO Ye-qing, LI Yan, LU Fa-yun, et al Flow stress behavior and microstructure of 7150 aluminum alloy during hot deformation[J]. Journal of Aeronautical Materials, 2015, 35 (3): 18- 23.
MA Zhi-feng, ZHAO Wei-yi, LU Zheng Impact of texture and microstructure on in-plane anisotropy of ultra-high strength aluminium alloy[J]. Journal of Aeronautical Materials, 2015, 35 (3): 1- 6.
LIU Ming, RU Ji-gang, ZANG Jin-xin, et al Thermal stability of new style Al-Zn-Mg-Cu aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (4): 13- 18.
9
SAHOO K L, DAS S K, MURTY B S Formation of novel microstructures in conventionally cast Al-Fe-V-Si alloys[J]. Materials Science and Engineering: A, 2003, 355, 193- 200.
10
YANEVA S, KALKANL A, PETROV K, et al Structure development in rapidly solidified Al-Fe-V-Si ribbons[J]. Materials Science and Engineering: A, 2004, 373, 90- 98.
11
SKINNER D J, BYE R L, RAYBOULD D, et al Dispersion strengthened Al-Fe-V-Si alloys[J]. Scripta Metallurgica, 1986, 20 (6): 867- 872.
TANG Yi-ping, LI Wen-xian, TAN Dun-qiang The preparation and properties of FVS0812[J]. Aluminium Fabrication, 2003, (1): 5- 9.
13
SKINNER D J, BYE R L, OKAZAKI K, et al. Aluminum-iron-vanadium alloys having high strength at elevated temperatures[P]. United States Patent: 4715893, 1987.
14
CARRENO F, GONZALEZ-DONCEL G, RUANO O A High temperature deformation behavior of an Al-Fe-V-Si alloy[J]. Materials Science and Engineering: A, 1993, 164, 216- 219.
15
唐谊平. 快速凝固FVS0812合金的制备新工艺研究[D]. 长沙: 中南大学, 2004.
16
HARIPRASAD S, SASTRY S M L, JERINA K L Deformation behavior of a rapidly solidified fine grained Al-8[J]. 5%Fe-1.2%V-1.7%Si alloy[J]. Acta Metallurgica, 1996, 44 (1): 383- 389.
17
HARIPRASAD S, SASTRY S M L, JERINA K L Deformation characteristics of the rapidly solidified Al-8[J]. 5%Fe-1.2%V-1.7%Si alloy[J]. Scripta Metallurgica, 1993, 29, 463- 466.
DONG Yin-sheng, SHEN Jun, YANG Ying-jun, et al The development and trend of rapidly solidified high temperature aluminum alloys[J]. Powder Metallurgy Technology, 2000, 18 (1): 35- 41.
21
CARRENO F, PEREZ-PRADO M T, GONZALEZ-DONCEL G, et al Texture stability of a rapidly solidified dispersion strengthened Al-Fe-V-Si material[J]. Scripta Materialia, 1998, 38 (9): 1427- 1433.
22
PARK W J, AHN S, KIM N J Evolution of microstructure in a rapidly solidified Al-Fe-V-Si alloy[J]. Material Science and Engineering: A, 1994, 189, 291- 299.
23
TAN D Q, LI W X, XIAO Y D, et al Phase transition of Al-Fe-V-Si heat-resistant alloy by spray deposition[J]. Transactions of Nonferrous Metals Society of China, 2003, 13 (3): 568- 573.
TAN Dun-qiang, TANG Jian-cheng, LI Wen-xian, et al Effect of cooling rate on primary phase constitutes of Al-8[J]. 5Fe-1.3V-1.7Si alloy[J]. The Chinese Journal of Nonferrous Metals, 2005, 15 (8): 1226- 1230.
TAN Dun-qiang, LI Wen-xian, CHEN Wei Effect of melt temperature and cooling rate on microstructure and mechanical properties of Al-Fe-V-Si heat-resistant aluminum alloy[J]. Journal of Aeronautical Materials, 2006, 26 (5): 14- 17.
26
TAN D Q, LI W X, XIAO Y D, et al Preparation of FVS1212/FVS0812 materials and its mechanical properties[J]. Journal of Central South University of Technology, 2005, 12 (5): 503- 506.
ZHU Bao-hong, XIONG Bai-qing, ZHANG Yong-an, et al Microstructure and evolution and mechanical properties heat-resistant Al-8[J]. 5Fe-1.1V-1.9Si alloy prepared by spray forming process[J]. Chinese Journal of Rare Metals, 2004, 28 (1): 185- 190.
29
DAVIES H A Processing, properties and applications of rapid solidified advanced alloy powders[J]. Powder Metallurgy, 1990, 33 (1): 223- 230.
ZHU Bao-hong, ZHANG Yong-an, LIU Hong-wei, et al Effects of in-situ TiC particles on the microstructures and mechanical properties of Al8[J]. 5Fe1.4V1.7Si aluminum alloy[J]. Journal of Materials Science & Engineering, 2006, 24 (1): 36- 39.
SUN Yu-feng, ZHANG Guo-sheng, SHEN Ning-fu, et al Effect of in situ TiC particles on the formation of clump-like phases in rapidly solidified Al-Fe-V-Si alloys[J]. Acta Metallurgica Sinica, 2001, 37 (11): 1193- 1197.
HU Dun-yuan, HUANG Zan-jun, YANG Bin, et al Microstructure characteristic of in-situ TiC/Al-Fe-V-Si composites prepared by spray forming[J]. Journal of University of Science and Technology Beijing, 2003, 25 (2): 152- 155.
33
HAMBLETON R, JONES H, RAINFORTH W M Effect of alloy composition and reinforcement with silicon carbide on the microstructure and mechanical properties of three silicon carbide dispersion strengthened aluminium alloys[J]. Materials Science and Engineering: A, 2001, 304-306, 524- 528.
HE Yi-qiang, TU Hong, FENG Li-chao, et al Microstructure evolution of spray deposited SiCp/Al-8[J]. 5Fe-1.3V-1.7Si during exposure at elevated temperatures[J]. Journal of Aeronautical Materials, 2012, 32 (5): 54- 59.
35
HE Y Q, QIAO B A study on interfacial structure of spray-deposited SiCp/Al-Fe-V-Si composite[J]. Advanced Composites Letters, 2009, 18 (4): 137- 142.
36
PENG L M, ZHU S J, MA Z Y, et al High temperature creep deformation of Al18B4O33 whisker-reinforced 8009 Al composite[J]. Material Science and Engineering: A, 1999, 265, 63- 70.
37
KHATRI S C, LAWLEY A, KOCZAK M J, et al Creep and microstructural stability of dispersion strengthened Al-Fe-V-Si-Er alloy[J]. Material Science and Engineering: A, 1993, 167 (1-2): 11- 21.
XIAO Yu-de, LI Wen-xian, LI Song-rui, et al Effect of rare-earth element erbium on microstructure and mechanical properties of FVS0812 alloy[J]. Journal of Central South University of Technology, 1997, 28 (5): 461- 464.
39
WANG J Q, TSENG M K, HAO Y Y, et al An investigation of the microstructure and mechanical behavior of novel nanocrystalline Al-Fe-V-Si-Mm alloy ribbons[J]. Materials Science and Engineering: A, 1998, 247, 51- 57.
ZHANG Lin-lin, XIAO Yu-de, ZHOU Juan, et al Effects of adding Mg and Cu elements on microstructure and mechanical properties of Al-Fe-V-Si alloy[J]. The Chinese Journal of Nonferrous Metals, 2006, 16 (5): 874- 880.
41
SAHOO K L, SIVARAMAKRISHNAN C S, CHAKRABARTI A K The effect of Mg treatment on the properties of Al-8[J]. 3Fe-0.8-0.9Si alloy[J]. Journal of Materials Processing Technology, 2001, 112, 6- 11.
ZHANG Lin-lin, XIAO Yu-de, ZHOU Juan, et al Effects of Be on microstructures and mechanical properties of as-cast Al-Fe-V-Si alloys[J]. Foundry, 2006, 55 (1): 65- 68.
43
WARNG P S, LIAUH Y J, LEE S L, et al Effects of Be addition on microstructures and mechanical properties of B319[J]. 0 alloys[J]. Materials Chemistry and Physics, 1998, 53 (3): 195- 202.
44
TANG Y P, TAN D Q, LI W X, et al Preparation of Al-Fe-V-Si alloy by spray co-deposition with added its over-sprayed powders[J]. Journal of Alloys and Compounds, 2007, 439, 103- 108.
LIU Ke-ming, LU De-ping, YANG Bin, et al Present status and development of rapid-solidified heat resistant aluminum alloys[J]. Materials Review, 2008, 22 (2): 57- 60.