Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (11): 91-97    DOI: 10.11868/j.issn.1001-4381.2015.11.015
  综述 本期目录 | 过刊浏览 | 高级检索 |
快速凝固Al-Fe-V-Si耐热铝合金研究进展
刘莹莹, 郑立静(), 张虎
北京航空航天大学材料科学与工程学院, 北京 100191
Research Progress in Al-Fe-V-Si Heat Resistant Alloys Prepared by Rapid Solidification
Ying-ying LIU, Li-jing ZHENG(), Hu ZHANG
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(1292 KB)   HTML ( 77 )  
输出: BibTeX | EndNote (RIS)      
摘要 

快速凝固技术制备Al-Fe-V-Si系合金,可以获得细小弥散且高温下扩散率低的第二相粒子,从而获得良好的耐热性能。本文综述了Al-Fe-V-Si系合金的发展历程,着重介绍了Al-Fe-V-Si系合金的制备工艺、微观组织控制及强化措施;分析了该合金目前发展中存在的问题,并阐述了该合金今后的发展应重点集中在工艺优化、提高热稳定等方面。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘莹莹
郑立静
张虎
关键词 Al-Fe-V-Si系合金制备工艺组织控制强化措施    
Abstract

Al-Fe-V-Si heat resistant alloys prepared by rapid solidification exhibit excellent thermal stability which can be ascribed to the obtained second phase particles of fine dispersoids and with low diffusibility. This paper reviewed the development history of Al-Fe-V-Si alloys. The preparation processes, microstructural control and strengthening measures were especially introduced. The problems met in the development of the alloys were analyzed emphatically and the future development should be focused on the optimization of process and the improvement of thermal stability.

Key wordsAl-Fe-V-Si alloy    preparation process    microstructural control    strengthening measure
收稿日期: 2014-03-30      出版日期: 2015-11-26
基金资助:国家自然科学基金项目(51101003)
通讯作者: 郑立静     E-mail: zhenglijing@buaa.edu.cn
作者简介: 郑立静(1974-),女,博士,副教授,主要从事高温金属间化合物结构材料,轻金属结构材料等方面研究,联系地址:北京市海淀区学院路37号北京航空航天大学新主楼D343(100191),E-mail:zhenglijing@buaa.edu.cn
引用本文:   
刘莹莹, 郑立静, 张虎. 快速凝固Al-Fe-V-Si耐热铝合金研究进展[J]. 材料工程, 2015, 43(11): 91-97.
Ying-ying LIU, Li-jing ZHENG, Hu ZHANG. Research Progress in Al-Fe-V-Si Heat Resistant Alloys Prepared by Rapid Solidification. Journal of Materials Engineering, 2015, 43(11): 91-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.11.015      或      http://jme.biam.ac.cn/CN/Y2015/V43/I11/91
Fig.1  工艺原理示意图
(a)平面流铸造法;(b)气体雾化法;(c)喷射沉积法
Preparing method Principle Cooling rate Phase composition Advantage & disadvantage
Planar flow casting The centrifugal force throws the molten alloy as the form of strip,then the strip pulverize with a thin,degassing,consolidation forming,as shown in fig.1(a)[13] 105-106 K/s α-AlAl12(Fe,V)3Si High cooling rates,excellent fatigue strength and fracture toughness but the process is complicated and the production cost is high[14]
Gas atomization The melt is broken into small droplets under high pressure and rapidly cooled into powders by thermal convection,as shown in fig.1(b)[15] 103-104 K/s α-AlAl8Fe2SiAl12(Fe,V)3Si It’s very useful in the preparation of small components but the manufacturing process will produce some harmful brittle phase[16, 17]
Spray deposition The melt is atomized into droplets by inert gas,then sprayed into the substrate,as shown in fig.1(c)[18] About 103 K/s α-AlAl8Fe2SiAl12(Fe,V)3SiAl13Fe4 It can control oxygen content effectively but its cooling rate is low,resulting in property are lower than that of other methods
Table 1  不同制备工艺对比
Fig.2  快速凝固Al-Fe-V-Si合金TEM图像
Fig.3  425℃不同体系快速凝固耐热铝合金弥散相粗化率[20]
Alloy Cooling rate/(K·s -1)
1 10 10 2 10 3 10 4 10 5
Al-8.5Fe α-Al,Al 13Fe 4 α-Al,Al 13Fe 4 α-Al,Al 13Fe 4 α-Al,Al 6Fe,Al mFe α-Al,Al 6Fe,Al mFe α-Al,Al mFe
Al-8.5Fe-1.7Si α-Al,Al 8Fe 2Si,Al 3(Fe,Si) α-Al,Al 8Fe 2Si,Al 3(Fe,Si) α-Al,Al 13Fe 4,Al 8Fe 2Si,Al 12Fe 3Si α-Al,Al 8Fe 2Si,Al 12Fe 3Si α-Al,Al 8Fe 2Si,Al 12Fe 3Si α-Al,Al 12Fe 3Si
Al-8.5Fe-1.3V-1.7Si α-Al,Al 8Fe 2Si,Al 3(Fe,V.Si) α-Al,Al 8Fe 2Si,Al 3(Fe,V,Si) α-Al,Al 3(Fe,V,Si),Al 8(Fe,V) 2Si,Al 12(Fe,V) 3Si α-Al,Al 8Fe 2Si,Al 12(Fe,V) 3Si α-Al,Al 8Fe 2Si,Al 12(Fe,V) 3Si α-Al,Al 12(Fe,V) 3Si
Table 2  不同冷速下三种Al-Fe-X系合金的相组成[23, 24]
Research institute Composition Room temperature(25℃) Elevated temperature(315℃)
σ 0.2/MPa σ b/MPa δ/% σ 0.2/MPa σ b/MPa δ/%
Alcoa Al-8Fe-6Ce 457 564 8.0 225 271 7.3
Pratt&Whitney Al-8Fe-2Mo-1V 393 512 3.0 208 237 9.7
Alcan Al-4.5Cr-1.5Zr-1.2Mn 486 536 7.7 214 235 -
Allied Singal Al-5.5Fe-0.5V-1.0Si 310 352 16.7 172 193 17.3
Allied Singal Al-8.5Fe-1.3V-1.7Si 414 462 12.9 255 276 11.9
Allied Singal Al-11.7Fe-1.15V-2.4Si 531 559 7.2 297 303 6.8
Research Institute for Nonferrous Metals Al-8.5Fe-1.1V-1.9Si 398 445 16 209 229 7
Central South University Al-8.5Fe-1.3V-1.7Si 412 458 8.6 189 a 204 a 8.9 a
Note: a-350℃
Table 3  快速凝固耐热铝合金的力学性能[18, 27, 28]
Fig.4  铝合金断裂韧性对比[29]
Alloy σ 0.2/MPa σ b/MPa δ/%
25℃ 350℃ 25℃ 350℃ 25℃ 350℃
FVS0812 435 204 330 181 14 7
FVS0812+3TiC 482 224 427 191 15 7
Table 4  TiC对FVS0812合金力学性能影响[30]
Alloy Room temperature(25℃) Elevated temperature(350℃)
σ 0.2/MPa σ b/MPa δ F/% σ 0.2/MPa σ b/MPa δ 5/%
Al-Fe-V-Si 350±4 491±5 1.9±0.1 157±8 190±10 5.5±0.4
Al-Fe-V-Si+20SiC - 395 0.6 166 172 -
Table 5  SiC对FVS0812合金力学性能影响[33]
Alloy Room temperature(25℃) Elevated temperature(350℃)
σ 0.2/MPa σ b/MPa δ/% σ 0.2/MPa σ b/MPa δ/%
FVS0812+Er 357 394 13.3 155 162 6.8
FVS0812 388 420 6.9 137 171 4.2
Table 6  Er元素对FVS0812合金力学性能影响[38]
1 DAS S K, BYE R L, GILMAN P S Large scale manufacturing of rapidly solidified aluminum alloys[J]. Materials Science and Engineering: A, 1991, 134, 1103- 1106.
2 KIM Y W Advanced aluminum alloys for high temperature structural applications[J]. Industrial Heating, 1988, 5, 31- 34.
3 XIAO Y D, LI S R, XIE Y N Consolidation processing and mechanical properties of rapidly solidified Al-Fe-Cr-Zr heat-resistant aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 1995, 5 (2): 128- 131.
4 LEE S, LEE D Y, KIM N J Correlation of microstructure and fracture toughness of a rapid solidification-powder metallurgy Al-Fe-V-Si alloy[J]. Materials Science and Engineering: A, 1991, 147, 33- 44.
5 李伟, 李沛勇 固/粉末冶金Al-Fe-Mo-Si/Zn-Al复合材料组织与性能的影响[J]. 航空材料学报, 2006, 26 (2): 12- 15.
5 LI Wei, LI Pei-yong Effects of powder particle size on microstructure and properties of RS P/M Al-Fe-Mo-Si/Zn-Al composites[J]. Journal of Aeronautical Materials, 2006, 26 (2): 12- 15.
6 赵业青, 李岩, 鲁法云, 等 7150铝合金热变形行为及微观组织[J]. 航空材料学报, 2015, 35 (3): 18- 23.
6 ZHAO Ye-qing, LI Yan, LU Fa-yun, et al Flow stress behavior and microstructure of 7150 aluminum alloy during hot deformation[J]. Journal of Aeronautical Materials, 2015, 35 (3): 18- 23.
7 马志峰, 赵唯一, 陆政 织构及组织结构对超高强铝合金平面力学性能的影响[J]. 航空材料学报, 2015, 35 (3): 1- 6.
7 MA Zhi-feng, ZHAO Wei-yi, LU Zheng Impact of texture and microstructure on in-plane anisotropy of ultra-high strength aluminium alloy[J]. Journal of Aeronautical Materials, 2015, 35 (3): 1- 6.
8 刘铭, 汝继刚, 臧金鑫, 等 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43 (4): 13- 18.
8 LIU Ming, RU Ji-gang, ZANG Jin-xin, et al Thermal stability of new style Al-Zn-Mg-Cu aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (4): 13- 18.
9 SAHOO K L, DAS S K, MURTY B S Formation of novel microstructures in conventionally cast Al-Fe-V-Si alloys[J]. Materials Science and Engineering: A, 2003, 355, 193- 200.
10 YANEVA S, KALKANL A, PETROV K, et al Structure development in rapidly solidified Al-Fe-V-Si ribbons[J]. Materials Science and Engineering: A, 2004, 373, 90- 98.
11 SKINNER D J, BYE R L, RAYBOULD D, et al Dispersion strengthened Al-Fe-V-Si alloys[J]. Scripta Metallurgica, 1986, 20 (6): 867- 872.
12 唐谊平, 黎文献, 谭敦强 FVS0812的制备与性能[J]. 铝加工, 2003, (1): 5- 9.
12 TANG Yi-ping, LI Wen-xian, TAN Dun-qiang The preparation and properties of FVS0812[J]. Aluminium Fabrication, 2003, (1): 5- 9.
13 SKINNER D J, BYE R L, OKAZAKI K, et al. Aluminum-iron-vanadium alloys having high strength at elevated temperatures[P]. United States Patent: 4715893, 1987.
14 CARRENO F, GONZALEZ-DONCEL G, RUANO O A High temperature deformation behavior of an Al-Fe-V-Si alloy[J]. Materials Science and Engineering: A, 1993, 164, 216- 219.
15 唐谊平. 快速凝固FVS0812合金的制备新工艺研究[D]. 长沙: 中南大学, 2004.
16 HARIPRASAD S, SASTRY S M L, JERINA K L Deformation behavior of a rapidly solidified fine grained Al-8[J]. 5%Fe-1.2%V-1.7%Si alloy[J]. Acta Metallurgica, 1996, 44 (1): 383- 389.
17 HARIPRASAD S, SASTRY S M L, JERINA K L Deformation characteristics of the rapidly solidified Al-8[J]. 5%Fe-1.2%V-1.7%Si alloy[J]. Scripta Metallurgica, 1993, 29, 463- 466.
18 肖于德. 快速凝固AlFeVSi耐热铝合金组织性能及大规格材料制备工艺的研究[D]. 长沙: 中南大学, 2003.
19 袁武华. 多层喷射沉积制备大尺寸耐热铝合金管坯的研究[D]. 长沙: 中南大学, 2001.
20 董寅生, 沈军, 杨英俊, 等 快速凝固耐热铝合金的发展及展望[J]. 粉末冶金技术, 2000, 18 (1): 35- 41.
20 DONG Yin-sheng, SHEN Jun, YANG Ying-jun, et al The development and trend of rapidly solidified high temperature aluminum alloys[J]. Powder Metallurgy Technology, 2000, 18 (1): 35- 41.
21 CARRENO F, PEREZ-PRADO M T, GONZALEZ-DONCEL G, et al Texture stability of a rapidly solidified dispersion strengthened Al-Fe-V-Si material[J]. Scripta Materialia, 1998, 38 (9): 1427- 1433.
22 PARK W J, AHN S, KIM N J Evolution of microstructure in a rapidly solidified Al-Fe-V-Si alloy[J]. Material Science and Engineering: A, 1994, 189, 291- 299.
23 TAN D Q, LI W X, XIAO Y D, et al Phase transition of Al-Fe-V-Si heat-resistant alloy by spray deposition[J]. Transactions of Nonferrous Metals Society of China, 2003, 13 (3): 568- 573.
24 谭敦强, 唐建成, 黎文献, 等 冷却速度对Al-8[J]. 5Fe-1.3V-1.7Si合金主要相组成的影响[J]. 中国有色金属学报, 2005, 15 (8): 1226- 1230.
24 TAN Dun-qiang, TANG Jian-cheng, LI Wen-xian, et al Effect of cooling rate on primary phase constitutes of Al-8[J]. 5Fe-1.3V-1.7Si alloy[J]. The Chinese Journal of Nonferrous Metals, 2005, 15 (8): 1226- 1230.
25 谭敦强, 黎文献, 陈伟 熔体温度、冷却速率对Al-Fe-V-Si耐热铝合金组织和力学性能的影响[J]. 航空材料学报, 2006, 26 (5): 14- 17.
25 TAN Dun-qiang, LI Wen-xian, CHEN Wei Effect of melt temperature and cooling rate on microstructure and mechanical properties of Al-Fe-V-Si heat-resistant aluminum alloy[J]. Journal of Aeronautical Materials, 2006, 26 (5): 14- 17.
26 TAN D Q, LI W X, XIAO Y D, et al Preparation of FVS1212/FVS0812 materials and its mechanical properties[J]. Journal of Central South University of Technology, 2005, 12 (5): 503- 506.
27 郝亮. 喷射沉积SiCP/FVS1012及SiCP/FVS1212复合材料后续加工及组织性能的研究[D]. 长沙: 湖南大学, 2008.
28 朱宝宏, 熊柏青, 张永安, 等 喷射成形Al-8[J]. 5Fe-1.1V-1.9Si耐热铝合金的组织演变及性能分析[J]. 稀有金属, 2004, 28 (1): 185- 190.
28 ZHU Bao-hong, XIONG Bai-qing, ZHANG Yong-an, et al Microstructure and evolution and mechanical properties heat-resistant Al-8[J]. 5Fe-1.1V-1.9Si alloy prepared by spray forming process[J]. Chinese Journal of Rare Metals, 2004, 28 (1): 185- 190.
29 DAVIES H A Processing, properties and applications of rapid solidified advanced alloy powders[J]. Powder Metallurgy, 1990, 33 (1): 223- 230.
30 朱宝宏, 张永安, 刘红伟, 等 原位自生TiC颗粒对Al8[J]. 5Fe 1.4V1.7Si耐热铝合金的组织及性能的影响[J]. 材料科学与工程学报, 2006, 24 (1): 36- 39.
30 ZHU Bao-hong, ZHANG Yong-an, LIU Hong-wei, et al Effects of in-situ TiC particles on the microstructures and mechanical properties of Al8[J]. 5Fe1.4V1.7Si aluminum alloy[J]. Journal of Materials Science & Engineering, 2006, 24 (1): 36- 39.
31 孙玉峰, 张国胜, 沈宁福, 等 原位生成TiC对快凝Al-Fe-V-Si合金中"块状相"生成的影响[J]. 金属学报, 2001, 37 (11): 1193- 1197.
31 SUN Yu-feng, ZHANG Guo-sheng, SHEN Ning-fu, et al Effect of in situ TiC particles on the formation of clump-like phases in rapidly solidified Al-Fe-V-Si alloys[J]. Acta Metallurgica Sinica, 2001, 37 (11): 1193- 1197.
32 胡敦芫, 黄赞军, 杨滨, 等 喷射成形原位反应TiC/Al-Fe-V-Si复合材料的显微组织[J]. 北京科技大学学报, 2003, 25 (2): 152- 155.
32 HU Dun-yuan, HUANG Zan-jun, YANG Bin, et al Microstructure characteristic of in-situ TiC/Al-Fe-V-Si composites prepared by spray forming[J]. Journal of University of Science and Technology Beijing, 2003, 25 (2): 152- 155.
33 HAMBLETON R, JONES H, RAINFORTH W M Effect of alloy composition and reinforcement with silicon carbide on the microstructure and mechanical properties of three silicon carbide dispersion strengthened aluminium alloys[J]. Materials Science and Engineering: A, 2001, 304-306, 524- 528.
34 贺毅强, 屠宏, 冯立超, 等 喷射沉积SiCp/Al-8[J]. 5Fe-1.3V-1.7Si热暴露过程的显微组织演变[J]. 航空材料学报, 2012, 32 (5): 54- 59.
34 HE Yi-qiang, TU Hong, FENG Li-chao, et al Microstructure evolution of spray deposited SiCp/Al-8[J]. 5Fe-1.3V-1.7Si during exposure at elevated temperatures[J]. Journal of Aeronautical Materials, 2012, 32 (5): 54- 59.
35 HE Y Q, QIAO B A study on interfacial structure of spray-deposited SiCp/Al-Fe-V-Si composite[J]. Advanced Composites Letters, 2009, 18 (4): 137- 142.
36 PENG L M, ZHU S J, MA Z Y, et al High temperature creep deformation of Al18B4O33 whisker-reinforced 8009 Al composite[J]. Material Science and Engineering: A, 1999, 265, 63- 70.
37 KHATRI S C, LAWLEY A, KOCZAK M J, et al Creep and microstructural stability of dispersion strengthened Al-Fe-V-Si-Er alloy[J]. Material Science and Engineering: A, 1993, 167 (1-2): 11- 21.
38 肖于德, 黎文献, 李松瑞, 等 稀土Er对FVS0812合金组织性能的影响[J]. 中南工业大学学报, 1997, 28 (5): 461- 464.
38 XIAO Yu-de, LI Wen-xian, LI Song-rui, et al Effect of rare-earth element erbium on microstructure and mechanical properties of FVS0812 alloy[J]. Journal of Central South University of Technology, 1997, 28 (5): 461- 464.
39 WANG J Q, TSENG M K, HAO Y Y, et al An investigation of the microstructure and mechanical behavior of novel nanocrystalline Al-Fe-V-Si-Mm alloy ribbons[J]. Materials Science and Engineering: A, 1998, 247, 51- 57.
40 张林林, 肖于德, 周娟, 等 添加Mg和Cu对Al-Fe-V-Si合金组织与性能的影响[J]. 中国有色金属学报, 2006, 16 (5): 874- 880.
40 ZHANG Lin-lin, XIAO Yu-de, ZHOU Juan, et al Effects of adding Mg and Cu elements on microstructure and mechanical properties of Al-Fe-V-Si alloy[J]. The Chinese Journal of Nonferrous Metals, 2006, 16 (5): 874- 880.
41 SAHOO K L, SIVARAMAKRISHNAN C S, CHAKRABARTI A K The effect of Mg treatment on the properties of Al-8[J]. 3Fe-0.8-0.9Si alloy[J]. Journal of Materials Processing Technology, 2001, 112, 6- 11.
42 张林林, 肖于德, 周娟, 等 Be对铸态Al-Fe-V-Si合金组织及性能的影响[J]. 铸造, 2006, 55 (1): 65- 68.
42 ZHANG Lin-lin, XIAO Yu-de, ZHOU Juan, et al Effects of Be on microstructures and mechanical properties of as-cast Al-Fe-V-Si alloys[J]. Foundry, 2006, 55 (1): 65- 68.
43 WARNG P S, LIAUH Y J, LEE S L, et al Effects of Be addition on microstructures and mechanical properties of B319[J]. 0 alloys[J]. Materials Chemistry and Physics, 1998, 53 (3): 195- 202.
44 TANG Y P, TAN D Q, LI W X, et al Preparation of Al-Fe-V-Si alloy by spray co-deposition with added its over-sprayed powders[J]. Journal of Alloys and Compounds, 2007, 439, 103- 108.
45 刘克明, 陆德平, 杨滨, 等 快速凝固耐热铝合金的现状与进展[J]. 材料导报, 2008, 22 (2): 57- 60.
45 LIU Ke-ming, LU De-ping, YANG Bin, et al Present status and development of rapid-solidified heat resistant aluminum alloys[J]. Materials Review, 2008, 22 (2): 57- 60.
[1] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[2] 黄英, 陈晨, 李超, 王佳明, 张帅, 张政, 贾全兴, 路梦伟, 韩小鹏, 高小刚. 柔性储能电池电极的设计、制备与应用[J]. 材料工程, 2022, 50(4): 1-14.
[3] 刁明霞, 果春焕, 高华兵, 李海新, 董涛, 肖明颖, 杨振林, 姜风春. 泡沫金属复合材料的研究进展[J]. 材料工程, 2022, 50(12): 60-70.
[4] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[5] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[6] 蔡建明, 田丰, 刘东, 李娟, 弭光宝, 叶俊青. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018, 46(5): 36-43.
[7] 杨瑞, 齐哲, 杨金华, 焦健. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
[8] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[9] 刘毅, 魏世丞, 童辉, 田浩亮, 徐滨士. 热喷涂制备吸波涂层的研究进展[J]. 材料工程, 2014, 0(9): 106-112.
[10] 王华. 透明导电氧化物薄膜及其制备方法[J]. 材料工程, 2005, 0(9): 59-63.
[11] 姚秀荣, 韩杰才, 刘兆晶, 高跃岗, 李凤珍, 任善之. 原位生成球状VC颗粒增强不锈钢基复合材料的制备工艺优化[J]. 材料工程, 2005, 0(8): 59-63.
[12] 刘荣军, 张长瑞, 周新贵, 曹英斌, 刘晓阳. CVD SiC致密表面涂层制备及表征[J]. 材料工程, 2005, 0(4): 3-6.
[13] 唐邦铭, 梁子青, 益小苏. 复合材料RFI成形用树脂膜的成膜工艺性研究[J]. 材料工程, 2005, 0(4): 46-49.
[14] 叶斌, 何新波, 曲选辉, 秦明礼, 胡学晟. 制备工艺对Cf/SiC复合材料力学性能的影响[J]. 材料工程, 2004, 0(8): 47-50.
[15] 温广武, 雷廷权, 周玉. 石英玻璃基复合材料的研究进展[J]. 材料工程, 2002, 0(1): 40-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn