Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (4): 104-110    DOI: 10.11868/j.issn.1001-4381.2016.000050
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
含Ni夹杂的纳米晶Cu基体力学性能分子动力学模拟
张岩, 肖万伸()
湖南大学 机械与运载工程学院, 长沙 410082
Molecular Dynamics Simulations on Mechanical Properties of Substrate Cu with Impurity Ni
Yan ZHANG, Wan-shen XIAO()
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
全文: PDF(7999 KB)   HTML ( 18 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过拉伸加载的方式研究以Cu为基体、Ni为夹杂的Cu/Ni纳米晶薄膜的力学性能,以及夹杂尺寸、形状对薄膜屈服强度的影响。基于原子嵌入势函数,运用分子动力学方法分析夹杂与位错的相互作用。结果表明:Ni夹杂的引入降低了材料的屈服强度;而在塑性变形阶段依靠界面及Ni原子间较强的相互作用力,夹杂能够阻碍位错的传播,起到强化作用。对于正方形、横置矩形、圆形和竖置矩形的夹杂,当横截面积为6.9nm2时,薄膜的屈服强度接近;当横截面积为15.7nm2时,含横置矩形夹杂的薄膜具有最大屈服强度,为7.41MPa;当横截面积为3.1nm2时,含圆形夹杂的薄膜具有最大屈服强度,为6.93MPa。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张岩
肖万伸
关键词 分子动力学位错屈服强度强化作用    
Abstract

The mechanical properties of Cu/Ni film composed of substrate Cu and impurity Ni, and the influence of impurity sizes and shapes on yield strength was studied under tensile loading. Based on the embedded-atom-method potential, molecular dynamics simulations were carried out to analyze the interactions between the impurity and dislocations. The results show that the introduction of impurity Ni decreases the yield strength of the nano-crystalline. However, the impurity hinders the movement of dislocations because of the interface between Cu and Ni, and it strengthens the substrate due to the strong interaction force of Ni in the plastic deformation stage. The films with the shape of square, transverse rectangular, circular and vertical rectangular impurities have similar yield strengths at the cross-sectional size 6.9nm2; if the cross-sectional size is 15.7nm2, the film with transverse rectangular impurity has the largest yield strength 7.41MPa; at the cross-sectional size 3.1nm2, film with circular impurity has the highest yield strength 6.93MPa.

Key wordsmolecular dynamics(MD)    dislocation    yield strength    strengthening effect
收稿日期: 2016-01-12      出版日期: 2018-04-14
中图分类号:  TB31  
通讯作者: 肖万伸     E-mail: xwshndx@126.com
作者简介: 肖万伸(1959-), 男, 教授, 博士, 主要从事微观力学、复合材料损伤断裂、智能材料等方面研究工作, 联系地址:湖南省长沙市岳麓区湖南大学机械与运载工程学院(410082), E-mail:xwshndx@126.com
引用本文:   
张岩, 肖万伸. 含Ni夹杂的纳米晶Cu基体力学性能分子动力学模拟[J]. 材料工程, 2018, 46(4): 104-110.
Yan ZHANG, Wan-shen XIAO. Molecular Dynamics Simulations on Mechanical Properties of Substrate Cu with Impurity Ni. Journal of Materials Engineering, 2018, 46(4): 104-110.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000050      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/104
Fig.1  含有Ni夹杂的Cu基体拉伸仿真模型
(a)正方形;(b)横置矩形;(c)圆形;(d)竖置矩形
Section shape of impurity Characteristic length/nm Cross-sectional area/nm2 Type of the impurity size
a=b=1.76 3.1 Small
Square a=b=2.64 6.9 Middle
a=b=3.96 15.7 Large
a=4.32, b=0.72 3.1 Small
Transverse rectangle a=6.48, b=1.08 6.9 Middle
a=9.72, b=1.62 15.7 Large
r=0.99 3.1 Small
Circular shape r=1.48 6.9 Middle
r=2.23 15.7 Large
a=0.72, b=4.32 3.1 Small
Vertical rectangle a=1.08, b=6.48 6.9 Middle
a=0.72, b=4.32 15.7 Large
Table 1  分子动力学模拟中夹杂的尺寸参数
Fig.2  含夹杂的纳米晶基体拉伸应力-应变曲线
(a)正方形;(b)横置矩形;(c)圆形;(d)竖置矩形
Fig.3  纳米晶拉伸应变ε=0.18时不含夹杂 (a)与含正方形夹杂(b)纳米晶在中心区域变形对比图
Fig.4  初始弹性阶段位错的形核
Fig.5  传播过程中位错与夹杂及界面的相互作用
(a)位错向夹杂方向传播;(b)传播方向的改变
Fig.6  拉伸达到屈服点时竖置矩形夹杂与位错的相互作用
Fig.7  沿x-[100]方向拉伸纳米晶时屈服点夹杂与位错的相互作用
(a)竖置矩形夹杂;(b)横置矩形夹杂
Fig.8  含同一尺寸、不同形状夹杂的纳米晶的屈服强度对比
Fig.9  弹性阶段应变ε=0.06时圆形夹杂的位错示意图
1 BAKSHI S R , KESHRI A K , AGARWAL A . A comparison of mechanical and wear properties of plasma sprayed carbon nanotube reinforced aluminum composites at nano and macro scale[J]. Materials Science and Engineering:A, 2011, 528, 3375- 3384.
doi: 10.1016/j.msea.2011.01.061
2 GUZ I A , RODGER A A , GUZ A N , et al. Developing the mecha-nical models for nanomaterials[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38 (4): 1234- 1250.
doi: 10.1016/j.compositesa.2006.04.012
3 ZHANG L J , WEBSTER T J . Nanotechnology and nanomaterials:promises for improved tissue regeneration[J]. Nanotoday, 2009, 4 (1): 66- 80.
doi: 10.1016/j.nantod.2008.10.014
4 STONE V , NOWACK B , BAUN A , et al. Nanomaterials for environmental studies:classification, reference material issues, and strategies for physico-chemical characterisation[J]. Science of the Total Environment, 2010, 408 (7): 1745- 1754.
doi: 10.1016/j.scitotenv.2009.10.035
5 LI X D , BHUSHAN B , TAKASHIMA K , et al. Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques[J]. Ultramicroscopy, 2003, 97, 481- 494.
doi: 10.1016/S0304-3991(03)00077-9
6 TAMBE N S , BHUSHAN B . Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants[J]. Nanotechnology, 2004, 15 (11): 1561- 1570.
doi: 10.1088/0957-4484/15/11/033
7 SUMANT A V , AUCIELLO O , CARPICH RW , et al. Ultrananocrystalline and nanocrystalline diamond thin films for mems/nems applications[J]. MRS Bulletin, 2010, 35 (4): 281- 288.
doi: 10.1557/mrs2010.550
8 ZHU P Z , HU Y Z , MA T B , et al. Study of AFM-based nanometric cutting process using molecular dynamics[J]. Applied Surface Science, 2010, 256, 7160- 7165.
doi: 10.1016/j.apsusc.2010.05.044
9 ZHOU S X , WU L M , SUN J , et al. The change of the properties of acrylic-based polyurethane via addition of nano-silica[J]. Progress in Organic Coatings, 2002, 45 (1): 33- 42.
doi: 10.1016/S0300-9440(02)00085-1
10 LLIE N , HICKEL R . Macro-, micro-and nano-mechanical investigations on silorane and methacrylate-based composites[J]. Dental Materials, 2009, 25 (6): 810- 819.
doi: 10.1016/j.dental.2009.02.005
11 KELLY A . Composite materials after seventy years[J]. Journal of Materials Science, 2006, 41, 905- 912.
doi: 10.1007/s10853-006-6569-9
12 TAHA M A . Practicalization of cast metal matrix composites (MMCCs)[J]. Materials & Design, 2001, 22, 431- 441.
13 SCHALLER R . Metal matrix composites, a smart choice for high damping materials[J]. Journal of Alloys and Compounds, 2003, 355, 131- 135.
doi: 10.1016/S0925-8388(03)00239-1
14 CHO J , JOSHI M S , SUN C T . Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles[J]. Composites Science and Technology, 2006, 66, 1941- 1952.
doi: 10.1016/j.compscitech.2005.12.028
15 PELLICER E , VAREA A , PANE S , et al. Nanocrystalline electroplated Cu-Ni:metallic thin films with enhanced mechanical properties and tunable magnetic behavior[J]. Advanced Functional Materials, 2010, 20, 983- 991.
doi: 10.1002/adfm.200901732
16 ZHU X Y , LIU X J , ZONG R L , et al. Microstructure and mechanical properties of nanoscale Cu/Ni multilayers[J]. Materials Science and Engineering:A, 2010, 527, 1243- 1248.
doi: 10.1016/j.msea.2009.09.058
17 于超, 任会兰, 宁建国. 钨合金力学性能表征分子动力学模拟[J]. 材料工程, 2014, (10): 82- 89.
doi: 10.11868/j.issn.1001-4381.2014.10.015
17 YU C , REN H L , NING J G . Characterizations of tungsten alloy mechanical property by molecular dynamic simulations[J]. Journal of Materials Engineering, 2014, (10): 82- 89.
doi: 10.11868/j.issn.1001-4381.2014.10.015
18 PEI Q X , LU C , LEE H P , et al. Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations[J]. Nanoscale Res Lett, 2009, 4, 444- 451.
doi: 10.1007/s11671-009-9268-z
19 TONG Z , LIANG Y C , JIANG X Q , et al. An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools[J]. Applied Surface Science, 2009, 290, 458- 465.
20 MUSAZADAH M H , DEHGHANI K . Molecular dynamic simulation of crack propagation in nanocrystalline Ni containing different shapes and types of second phases[J]. Computational Materials Science, 2011, 50, 3075- 3079.
doi: 10.1016/j.commatsci.2011.04.032
21 CHEN S D , ZHOU Y K , SOH A K . Molecular dynamics simulations of mechanical properties for Cu(001)/Ni(001) twist boun-daries[J]. Computational Materials Science, 2012, 61, 239- 242.
doi: 10.1016/j.commatsci.2012.04.035
22 RAFⅡ T H , SHODJA H M , DARABI M , et al. Molecular dynamics simulation of crack propagation in fcc materials containing clusters of impurities[J]. Mechanics of Materials, 2006, 38, 243- 252.
doi: 10.1016/j.mechmat.2005.06.006
23 CHELLALI M R , BALOGH Z , BOUCHIKHAOUI H , et al. Triple junction transport and the impact of grain boundary width in nanocrystalline[J]. Nano Letters, 2012, 12 (7): 3448- 3454.
doi: 10.1021/nl300751q
24 白清顺, 童振, 梁迎春, 等. 单晶Cu纳米杆拉伸力学特性的尺寸依赖性模拟[J]. 金属学报, 2009, 46 (10): 1173- 1180.
24 BAI Q S , TONG Z , LIANG Y C , et al. Simulation of scale dependency on tensile mechanical properties of single crystal copper nano-rod[J]. Acta Metallurgica Sinica, 2009, 46 (10): 1173- 1180.
25 成聪, 陈尚达, 吴勇芝, 等. 不同应变率下纳米多晶Cu/Ni薄膜变形行为的分子动力学模拟[J]. 材料工程, 2015, 43 (3): 60- 66.
doi: 10.11868/j.issn.1001-4381.2015.03.011
25 CHENG C , CHEN S D , WU Y Z , et al. Molecular dynamics simulations of deformation behaviors for nanocrystalline Cu/Ni films under different strain rates[J]. Journal of Materials Engineering, 2015, 43 (3): 60- 66.
doi: 10.11868/j.issn.1001-4381.2015.03.011
26 GUO Y B , LIANG Y C , CHEN M J , et al. Molecular dynamics simulations of thermal effects in nanometric cutting process[J]. Science China Technological Sciences, 2010, 531, 870- 874.
27 FOILES S M , BASKES M I , DAW M S . Embedded-atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B, 1986, 33, 7983- 7991.
doi: 10.1103/PhysRevB.33.7983
28 DAW M S , FOILES S M , BASKES M I . The embedded-atom method:a review of theory and applications[J]. Materials Science Reports, 1993, 9, 251- 310.
doi: 10.1016/0920-2307(93)90001-U
29 HONEYCUTT J D , ANDERSEN H C . Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. Journal of Chemical Physics, 1987, 91, 4950- 4963.
doi: 10.1021/j100303a014
[1] 赵云松, 杨昭, 陈瑞志, 张剑, 骆宇时, 刘丽荣. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127-136.
[2] 姚凯, 闵小华. 变形温度与应变速率耦合作用对TWIP效应Ti-15Mo合金力学性能的影响[J]. 材料工程, 2022, 50(8): 133-142.
[3] 张瑞, 孟亦圆, 陈军, 车枫, 林莉, 罗忠兵. 工业纯铁退火过程中的位错密度和磁性能[J]. 材料工程, 2022, 50(6): 157-163.
[4] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[5] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[6] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[7] 薛彦庆, 郝启堂, 魏典, 李博. 原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J]. 材料工程, 2021, 49(2): 97-104.
[8] 虞兮凡, 赵伶玲. 热电材料β-Cu2-xSe热传导性能模拟研究[J]. 材料工程, 2021, 49(2): 121-126.
[9] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[10] 袁继慧, 陈辉明, 谢伟滨, 魏海根, 汪航, 杨斌. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146.
[11] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[12] 蒋少松, 杨天豪, 孙宏宇, 何玉石, 卢振, 王瑞卓. 超声波振动对钛箔拉伸性能及位错分布的影响[J]. 材料工程, 2019, 47(2): 84-89.
[13] 叶凌英, 杨栋, 李红萍, 张新明, 廖荣跃. 5A90铝锂合金超塑性变形机理的定量研究[J]. 材料工程, 2019, 47(11): 163-170.
[14] 叶想平, 李英雷, 翁继东, 蔡灵仓, 刘仓理. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程, 2018, 46(12): 28-37.
[15] 滕全全, 汪悦, 有移亮, 张峥. 充氢Cr-Mo钢变形过程的声发射特征[J]. 材料工程, 2017, 45(10): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn