The mechanical properties of Cu/Ni film composed of substrate Cu and impurity Ni, and the influence of impurity sizes and shapes on yield strength was studied under tensile loading. Based on the embedded-atom-method potential, molecular dynamics simulations were carried out to analyze the interactions between the impurity and dislocations. The results show that the introduction of impurity Ni decreases the yield strength of the nano-crystalline. However, the impurity hinders the movement of dislocations because of the interface between Cu and Ni, and it strengthens the substrate due to the strong interaction force of Ni in the plastic deformation stage. The films with the shape of square, transverse rectangular, circular and vertical rectangular impurities have similar yield strengths at the cross-sectional size 6.9nm2; if the cross-sectional size is 15.7nm2, the film with transverse rectangular impurity has the largest yield strength 7.41MPa; at the cross-sectional size 3.1nm2, film with circular impurity has the highest yield strength 6.93MPa.
张岩, 肖万伸. 含Ni夹杂的纳米晶Cu基体力学性能分子动力学模拟[J]. 材料工程, 2018, 46(4): 104-110.
Yan ZHANG, Wan-shen XIAO. Molecular Dynamics Simulations on Mechanical Properties of Substrate Cu with Impurity Ni. Journal of Materials Engineering, 2018, 46(4): 104-110.
BAKSHI S R , KESHRI A K , AGARWAL A . A comparison of mechanical and wear properties of plasma sprayed carbon nanotube reinforced aluminum composites at nano and macro scale[J]. Materials Science and Engineering:A, 2011, 528, 3375- 3384.
doi: 10.1016/j.msea.2011.01.061
2
GUZ I A , RODGER A A , GUZ A N , et al. Developing the mecha-nical models for nanomaterials[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38 (4): 1234- 1250.
doi: 10.1016/j.compositesa.2006.04.012
3
ZHANG L J , WEBSTER T J . Nanotechnology and nanomaterials:promises for improved tissue regeneration[J]. Nanotoday, 2009, 4 (1): 66- 80.
doi: 10.1016/j.nantod.2008.10.014
4
STONE V , NOWACK B , BAUN A , et al. Nanomaterials for environmental studies:classification, reference material issues, and strategies for physico-chemical characterisation[J]. Science of the Total Environment, 2010, 408 (7): 1745- 1754.
doi: 10.1016/j.scitotenv.2009.10.035
5
LI X D , BHUSHAN B , TAKASHIMA K , et al. Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques[J]. Ultramicroscopy, 2003, 97, 481- 494.
doi: 10.1016/S0304-3991(03)00077-9
6
TAMBE N S , BHUSHAN B . Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants[J]. Nanotechnology, 2004, 15 (11): 1561- 1570.
doi: 10.1088/0957-4484/15/11/033
7
SUMANT A V , AUCIELLO O , CARPICH RW , et al. Ultrananocrystalline and nanocrystalline diamond thin films for mems/nems applications[J]. MRS Bulletin, 2010, 35 (4): 281- 288.
doi: 10.1557/mrs2010.550
8
ZHU P Z , HU Y Z , MA T B , et al. Study of AFM-based nanometric cutting process using molecular dynamics[J]. Applied Surface Science, 2010, 256, 7160- 7165.
doi: 10.1016/j.apsusc.2010.05.044
9
ZHOU S X , WU L M , SUN J , et al. The change of the properties of acrylic-based polyurethane via addition of nano-silica[J]. Progress in Organic Coatings, 2002, 45 (1): 33- 42.
doi: 10.1016/S0300-9440(02)00085-1
10
LLIE N , HICKEL R . Macro-, micro-and nano-mechanical investigations on silorane and methacrylate-based composites[J]. Dental Materials, 2009, 25 (6): 810- 819.
doi: 10.1016/j.dental.2009.02.005
11
KELLY A . Composite materials after seventy years[J]. Journal of Materials Science, 2006, 41, 905- 912.
doi: 10.1007/s10853-006-6569-9
12
TAHA M A . Practicalization of cast metal matrix composites (MMCCs)[J]. Materials & Design, 2001, 22, 431- 441.
13
SCHALLER R . Metal matrix composites, a smart choice for high damping materials[J]. Journal of Alloys and Compounds, 2003, 355, 131- 135.
doi: 10.1016/S0925-8388(03)00239-1
14
CHO J , JOSHI M S , SUN C T . Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles[J]. Composites Science and Technology, 2006, 66, 1941- 1952.
doi: 10.1016/j.compscitech.2005.12.028
15
PELLICER E , VAREA A , PANE S , et al. Nanocrystalline electroplated Cu-Ni:metallic thin films with enhanced mechanical properties and tunable magnetic behavior[J]. Advanced Functional Materials, 2010, 20, 983- 991.
doi: 10.1002/adfm.200901732
16
ZHU X Y , LIU X J , ZONG R L , et al. Microstructure and mechanical properties of nanoscale Cu/Ni multilayers[J]. Materials Science and Engineering:A, 2010, 527, 1243- 1248.
doi: 10.1016/j.msea.2009.09.058
YU C , REN H L , NING J G . Characterizations of tungsten alloy mechanical property by molecular dynamic simulations[J]. Journal of Materials Engineering, 2014, (10): 82- 89.
doi: 10.11868/j.issn.1001-4381.2014.10.015
18
PEI Q X , LU C , LEE H P , et al. Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations[J]. Nanoscale Res Lett, 2009, 4, 444- 451.
doi: 10.1007/s11671-009-9268-z
19
TONG Z , LIANG Y C , JIANG X Q , et al. An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools[J]. Applied Surface Science, 2009, 290, 458- 465.
20
MUSAZADAH M H , DEHGHANI K . Molecular dynamic simulation of crack propagation in nanocrystalline Ni containing different shapes and types of second phases[J]. Computational Materials Science, 2011, 50, 3075- 3079.
doi: 10.1016/j.commatsci.2011.04.032
21
CHEN S D , ZHOU Y K , SOH A K . Molecular dynamics simulations of mechanical properties for Cu(001)/Ni(001) twist boun-daries[J]. Computational Materials Science, 2012, 61, 239- 242.
doi: 10.1016/j.commatsci.2012.04.035
22
RAFⅡ T H , SHODJA H M , DARABI M , et al. Molecular dynamics simulation of crack propagation in fcc materials containing clusters of impurities[J]. Mechanics of Materials, 2006, 38, 243- 252.
doi: 10.1016/j.mechmat.2005.06.006
23
CHELLALI M R , BALOGH Z , BOUCHIKHAOUI H , et al. Triple junction transport and the impact of grain boundary width in nanocrystalline[J]. Nano Letters, 2012, 12 (7): 3448- 3454.
doi: 10.1021/nl300751q
BAI Q S , TONG Z , LIANG Y C , et al. Simulation of scale dependency on tensile mechanical properties of single crystal copper nano-rod[J]. Acta Metallurgica Sinica, 2009, 46 (10): 1173- 1180.
CHENG C , CHEN S D , WU Y Z , et al. Molecular dynamics simulations of deformation behaviors for nanocrystalline Cu/Ni films under different strain rates[J]. Journal of Materials Engineering, 2015, 43 (3): 60- 66.
doi: 10.11868/j.issn.1001-4381.2015.03.011
26
GUO Y B , LIANG Y C , CHEN M J , et al. Molecular dynamics simulations of thermal effects in nanometric cutting process[J]. Science China Technological Sciences, 2010, 531, 870- 874.
27
FOILES S M , BASKES M I , DAW M S . Embedded-atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B, 1986, 33, 7983- 7991.
doi: 10.1103/PhysRevB.33.7983
28
DAW M S , FOILES S M , BASKES M I . The embedded-atom method:a review of theory and applications[J]. Materials Science Reports, 1993, 9, 251- 310.
doi: 10.1016/0920-2307(93)90001-U
29
HONEYCUTT J D , ANDERSEN H C . Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. Journal of Chemical Physics, 1987, 91, 4950- 4963.
doi: 10.1021/j100303a014