Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 52-58    DOI: 10.11868/j.issn.1001-4381.2016.000104
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电流密度对微/纳结构电铸成型模芯质量的影响
翁灿1,2, 王飞1,2, 杨冬娇1,2, 吕辉1,2, 蒋炳炎1,2
1 中南大学 高性能复杂制造国家重点实验室, 长沙 410083;
2 中南大学 机电工程学院, 长沙 410083
Effect of Current Density on Quality of Electroformed Mold Inserts with Micro/Nano-cavities
WENG Can1,2, WANG Fei1,2, YANG Dong-jiao1,2, LYU Hui1,2, JIANG Bing-yan1,2
1 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China;
2 College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
全文: PDF(4490 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用多物理场耦合分析软件COMSOL Multiphysics,模拟微/纳结构电铸过程中阴极表面的电场分布,研究不同电流密度下微/纳结构表面的电场分布及电铸层生长前沿情况。仿真结果表明:采用较低的初始电流密度,可有效改善微/纳结构生长前沿铸层厚度的均匀性。选用纳米光阑和纳米柱阵列2种微/纳结构母板进行电铸实验,将初始电流密度从4A/dm2调至1A/dm2,纳米光阑母板成型最大误差60nm降至±20nm之内。通过合理设置初始电流密度、增强阴极表面溶液流动强度等措施,纳米柱阵列模芯特征直径尺寸误差由6.27%下降至2.49%,有效提高电铸模芯的复制质量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翁灿
王飞
杨冬娇
吕辉
蒋炳炎
关键词 微/纳结构电铸电流密度模芯    
Abstract:Based on the COMSOL Multiphysics software, the electric field distribution and the growth front of electroformed layer on the cathode surface were simulated during the electroforming process. The simulation results show that the uniformity of electroformed layer with micro/nano-cavities can be effectively improved with a better replication quality by using a lower initial current density. Both nano-diaphragm and nanopillar array are selected as masters for the electroforming experiments. When the initial current density decreases from 4A/dm2 to 1A/dm2, the maximum deviation of characteristic width between the nano-diaphragm master and mold inserts dramatically decreases from 60nm to ±20nm. By setting proper current density and enhancing mass transfer near the cathode surface, the characteristic diameter dimension error of electroformed mold inserts for nanopillar array decreases from 6.27% to 2.49%. The replication quality of electroformed mold inserts with micro/nano-cavities can be significantly improved by these methods.
Key wordsmicro/nano structure    electroforming    current density    mold insert
收稿日期: 2016-01-21      出版日期: 2017-10-18
中图分类号:  TQ153.4  
通讯作者: 蒋炳炎(1963-),男,教授,博士,主要从事微纳零件制造、聚合物精密成型、高性能复合材料成型等方面的研究,联系地址:湖南省长沙市中南大学机电工程学院(410083),E-mail:jby@csu.edu.cn     E-mail: jby@csu.edu.cn
引用本文:   
翁灿, 王飞, 杨冬娇, 吕辉, 蒋炳炎. 电流密度对微/纳结构电铸成型模芯质量的影响[J]. 材料工程, 2017, 45(10): 52-58.
WENG Can, WANG Fei, YANG Dong-jiao, LYU Hui, JIANG Bing-yan. Effect of Current Density on Quality of Electroformed Mold Inserts with Micro/Nano-cavities. Journal of Materials Engineering, 2017, 45(10): 52-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000104      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/52
[1] 王国彪,黎明,丁玉成,等.重大研究计划"纳米制造的基础研究"综述[J].中国科学基金,2010(2):70-77. WANG G B,LI M,DING Y C,et al.Review on major research project"fundamental research of nano-manufacturing"[J].Bulletin of National Natural Science Foundation of China,2010(2):70-77.
[2] 崔铮.微纳米加工技术及其应用综述[J].物理,2006,35(1):34-39. CUI Z.Overview of micro/nanofabrication technologies and applications[J].Physics,2006,35(1):34-39.
[3] ATHINARAYANAN B,JEONG D Y,KANG J H,et al.Fabrication of hydrophobic and anti-reflective polymeric films using anodic aluminum-oxide imprints[J].Journal of the Korean Physical Society,2015,67(11):1977-1985.
[4] 申溯,周雷,魏国军,等.微区微纳米压印技术及设备[J].光学精密工程,2009,17(4):807-812. SHEN S,ZHOU L,WEI G J,et al.Design of distributed micro-area micro/nano-imprinting lithographic system[J].Optics & Precision Engineering,2009,17(4):807-812.
[5] CUI B,KEIMEL C,CHOU S Y.Ultrafast direct imprinting of nanostructures in metals by pulsed laser melting[J].Nanotechnology,2010,21(4):045303.
[6] 周明勇,蒋炳炎,张露,等.模板法注射成型纳米结构及其疏水特性[J].光学精密工程,2015,23(1):165-173. ZHOU M Y,JIANG B Y,ZHANG L,et al.Injection molding nanostructures by template method and their hydrophobic properties[J].Optics & Precision Engineering,2015,23(1):165-173.
[7] STORMONTH-DARLING,JOHN M.Fabrication of difficult nanostructures by injection moulding[D].UK:University of Glasgow,2013.
[8] KIM W W,GANG M G,MIN B K,et al.Experimental and numerical investigations of cavity filling process in injection moulding for microcantilever structures[J].The International Journal of Advanced Manufacturing Technology,2014,75(1):293-304.
[9] 周明勇,蒋炳炎,鲁立君,等.聚合物纳米/亚微米结构零件注射成型的研究进展[J].材料工程,2014(4):95-100. ZHOU M Y,JIANG B Y,LU L J,et al.Progress in research on polymer nano/sub-micro structures by injection molding[J].Journal of Materials Engineering,2014(4):95-100.
[10] WATANABE T,SUUKI K,IYAMA H,et al.A master-mold fabrication by electron beam lithography followed by nanoimprinting and self-aligned double patterning[J].Jpn J Appl Phys,2014,53(6S):06JK05.
[11] RESNICK P J.Design of experiment for the optimisation of deep reactive ion etching of silicon inserts for microfabrication[C]//Progress in Biomedical Optics and Imaging-Proceedings of SPIE.San Francisco:SPIE,2012.
[12] MOJARAD N,HOJEIJ M,WANG L,et al.Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5nm technology node and beyond[J].Nanoscale,2015,7(9):4031-4037.
[13] YOON S H,SRIROJPINYO C,LEE J,et al.Investigation of tooling surfaces on injection molded nanoscale features[J].NSTI-Nanotech,2004,3:460-463.
[14] BRUCK R,HAINBERGER R,KÖCK A,et al.Direct replication of nanostructures from silicon wafers in polymethylpentene by injection molding[C]//DAVID H K,WILLIAM S B.Conference on Polymer Optics Design,Fabrication and Materials.San Diego:International Society for Optics and Photonics,2010.
[15] LIN X,DOU X,WANG X,et al.Nickel electroplating for nanostructure mold fabrication[J].Journal of Nanoscience & Nanotechnology,2011,11(8):7006-7010.
[16] OHS C,BAE B J,YANG K Y,et al.Fabrication of aluminum nano-scale structures using direct-embossing with a nickel template[J].Metals & Materials International,2011,17(5):771-775.
[17] JIANG B Y,ZHOU M Y,WENG C,et al.Fabrication of nanopillar arrays by combining electroforming and injection molding[J].International Journal of Advanced Manufacturing Technology,2016,86(5/8):1319-1328.
[18] HAN J,HAN J,LEE B S,et al.Elimination of nanovoids induced during electroforming of metallic nanostamps with high-aspect-ratio nanostructures by the pulse reverse current electroforming process[J].Journal of Micromechanics & Microengineering,2012,22(6):561-566.
[19] 胡洋洋,朱荻,李寒松.采用过电铸工艺制造金属微细阵列网板[J].光学精密工程,2010,18(8):1793-1800. HU Y Y,ZHU D,LI H S.Fabrication of metal micro hole array by using over-plating technology[J].Optics & Precision Engineering,2010,18(8):1793-1800.
[20] 吕辉,徐腾飞,刘佳,等.辅助阴极对电铸微模芯厚度均匀性的影响[J].电镀与涂饰,2014,33(17):732-736. LV H,XU T F,LIU J,et al.Effect of auxiliary cathode on thickness uniformity of micro-electroformed mold insert[J].Electroplating & Finishing,2014,33(17):732-736.
[1] 黎醒, 蒋炳炎, 吕辉, 周明勇, 翁灿. 疏水植物表面微纳复合结构电铸模芯的制备[J]. 材料工程, 2018, 46(2): 66-72.
[2] 朱敏, 刘智勇, 杜翠薇, 李晓刚, 王丽叶. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响[J]. 材料工程, 2015, 43(2): 85-90.
[3] 罗扬, 田文怀, 石高锋, 成生伟. 退火对高速电铸镍组织和塑性的影响[J]. 材料工程, 2014, 0(4): 40-45.
[4] 裴和中, 黄攀, 史庆南, 陆峰, 张俊, 张国亮. 添加剂和电流密度对镍钴合金电铸层组织结构的影响[J]. 材料工程, 2013, 0(6): 18-24.
[5] 关永永, 徐瑞东, 黄利平, 孔营, 陈步明. Al/Pb/α-PbO2惰性阳极材料制备及电化学性能[J]. 材料工程, 2013, (2): 87-92.
[6] 张著, 郭忠诚, 龙晋明, 曹梅. 电流密度对甲基磺酸盐电沉积亚光锡的影响[J]. 材料工程, 2012, 0(4): 76-81.
[7] 李学磊, 朱增伟, 朱荻. 游离粒子辅助磨对镍锰合金电铸层表面质量及锰含量的影响[J]. 材料工程, 2010, 0(12): 14-18.
[8] 李小兵, 刘莹. 材料表面润湿性的控制与制备技术[J]. 材料工程, 2008, 0(4): 74-80.
[9] 雷卫宁, 朱荻, 李冬林, 刘浏, 李仁兴. 高性能微细电铸的实验研究[J]. 材料工程, 2008, 0(10): 25-28.
[10] 赵海军, 刘磊, 唐谊平, 朱建华, 胡文彬. 电铸制备铜-石墨复合材料的研究[J]. 材料工程, 2006, 0(5): 12-15.
[11] 李文芳, 黄京浩, 张永君, 杜军. 镁合金微弧氧化过程中参数对成膜效果的影响和优化[J]. 材料工程, 2006, 0(2): 51-55.
[12] 王伊卿, 唐一平, 赵文轸, 卢秉恒. 电铸与电弧喷涂相结合的模具制造方法[J]. 材料工程, 2001, 0(6): 30-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn