Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (10): 132-137    DOI: 10.11868/j.issn.1001-4381.2016.000130
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
304奥氏体不锈钢晶间腐蚀敏感性的非线性超声表征
侯天宇, 李萍(), 陈雷, 赵杰, 李廷举
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Nonlinear Ultrasonic Characterization for Intergranular Corrosion Susceptibility of 304 Austenitic Stainless Steel
Tian-yu HOU, Ping LI(), Lei CHEN, Jie ZHAO, Ting-ju LI
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(4462 KB)   HTML ( 22 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用非线性超声检测技术并辅助于XRD与微观组织分析,探讨了在650℃经过2,6,10h敏化处理的304奥氏体不锈钢样品非线性超声特征参数的变化规律。结果表明:随着敏化时间的延长,归一化非线性系数单调增大;相比于固溶试样,经2,6,10h敏化处理后样品的归一化非线性系数分别增加28%,32%,43%,意味着以非线性系数表征304不锈钢的敏化度是可行的。分析认为:晶界析出碳化物(Cr23C6)与奥氏体基体产生的错配引发了局部应变场,干扰了超声波的传播;此外,随敏化时间延长,析出相的增加进一步加剧了超声波的畸变。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯天宇
李萍
陈雷
赵杰
李廷举
关键词 不锈钢敏化非线性超声晶间腐蚀    
Abstract

The variation law of nonlinear ultrasonic parameters for the samples sensitized at 650℃ for 2, 6, 10h was discussed using nonlinear ultrasonic testing technique and XRD pattern as well as microstructure. The results indicate that normalized nonlinear parameters(β/β0) of the samples show a monotonous growth trend with the increase of the sensitized time, and normalized nonlinear parameters(β/β0) of the samples sensitized with 2, 6, 10h increase to 28%, 32% and 43% respectively compared with that of the base material, meaning that it is feasible to use nonlinear parameter to characterize the sensitivity degree. It is analyzed that the mismatch between the carbide (Cr23C6) precipitated on the grain boundary and the austenitic matrix causes the local strain fields which interfere with the propagation of ultrasonic wave in the solid sample. In addition, the increment of precipitation phase exacerbates further the distortion of the ultrasonic with prolonging of the sensitization time.

Key wordsstainless steel    sensitization    nonlinear ultrasound    intergranular corrosion
收稿日期: 2016-01-26      出版日期: 2017-10-18
中图分类号:  TG174.3+3  
  O422.7  
基金资助:国家自然科学基金联合基金重点资助项目(51134013);国家自然科学基金资助项目(51171037);2016NSFC-山西煤基低碳联合基金重点资助项目(U1610256)
通讯作者: 李萍     E-mail: liping69@dlut.edu.cn
作者简介: 李萍(1969-), 女, 副教授, 博士, 现从事材料无损表征与评价方面研究工作, 联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学材料科学与工程学院(116024), E-mail:liping69@dlut.edu.cn
引用本文:   
侯天宇, 李萍, 陈雷, 赵杰, 李廷举. 304奥氏体不锈钢晶间腐蚀敏感性的非线性超声表征[J]. 材料工程, 2017, 45(10): 132-137.
Tian-yu HOU, Ping LI, Lei CHEN, Jie ZHAO, Ting-ju LI. Nonlinear Ultrasonic Characterization for Intergranular Corrosion Susceptibility of 304 Austenitic Stainless Steel. Journal of Materials Engineering, 2017, 45(10): 132-137.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000130      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/132
C Si Mn S P Cr Ni N Fe
0.053 0.43 1.28 0.005 0.034 18.01 8.02 0.06 Bal
Table 1  304奥氏体不锈钢的化学成分(质量分数/%)
Fig.1  超声非线性检测系统示意图
Fig.2  不同敏化时间时304不锈钢的X射线衍射谱图
Fig.3  碳化物相对含量随敏化时间变化曲线
Fig.4  不同敏化时间时304不锈钢的显微组织
(a)0h;(b)2h;(c)6h;(d)10h
Fig.5  归一化非线性系数随敏化时间变化曲线
Fig.6  内应力随敏化时间变化曲线
Fig.7  二次谐波幅值随敏化时间变化曲线
Fig.8  归一化非线性系数与碳化物相对含量的关系
1 FAULKNER R G . Radiation-induced grain boundary segregation in nuclear reactor steels[J]. Journal of Nuclear Materials, 1997, 251, 269- 275.
doi: 10.1016/S0022-3115(97)00248-1
2 于晓飞. 304、316不锈钢晶间腐蚀的实验与理论研究[D]. 济南: 山东大学, 2010.
2 YU X F.Study of the intergranular corrosion of stainless steel(304, 316) by experimental and theoretical methods[D].Jinan:Shandong University, 2010.
3 PRASANTHI T N , SUDHA C , PARAMESWARAN P , et al. Failure analysis of a 304 steel component aged at 623K[J]. Engineering Failure Analysis, 2013, 31 (7): 28- 39.
4 FULLER R W , EHRGOTT J Q , HEARD W F , et al. Failure analysis of AlSi 304 stainless steel shaft[J]. Engineering Failure Analysis, 2008, 15 (7): 835- 846.
doi: 10.1016/j.engfailanal.2007.11.001
5 PARVATHAVARTHINI N , GUPTA R K , KUMAR A V , et al. Interpretation of electrochemical potent ion kinetic reactivation data in the presence of sulphide/oxysulphide inclusions in 316LN stainless steel[J]. Corrosion Science, 2011, 53 (10): 3202- 3214.
doi: 10.1016/j.corsci.2011.05.065
6 黄彦良, BRIANK, THOMASB, 等. 原子力显微镜评价奥氏体不锈钢晶间腐蚀敏感性的研究[J]. 材料开发与应用, 2008, (3): 7- 11.
6 HUANG Y L , BRIAN K , THOMAS B , et al. Identification of sensitization of austenitic stainless steel to intergranular stress corrosion cracking by atomic force microscopy[J]. Development and Application of Materials, 2008, (3): 7- 11.
7 马红征, 杨军红, 翟同德, 等. 304不锈钢晶间腐蚀敏感性的评定[J]. 理化检验(物理分册), 2011, (11): 686- 689.
7 MA H Z , YANG J H , ZHAI T D , et al. Evaluation of intergranular sensitivity of 304 stainless steel[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing), 2011, (11): 686- 689.
8 SHAIKH H , SIVAIBHARASI N , SASI B , et al. Use of eddy current testing method in detection and evaluation of sensitization and intergranular corrosion in austenitic stainless steels[J]. Corrosion Science, 2006, 48 (6): 1462- 1482.
doi: 10.1016/j.corsci.2005.05.017
9 李萍, 程向梅, 李安娜, 等. 304不锈钢敏化程度的超声无损表征[J]. 机械工程材料, 2013, (3): 53- 57.
9 LI P , CHENG X M , LI A N , et al. Ultrasonic nondestructive characterization for sensitization degrees of 304 stainless steel[J]. Materials for Mechanical Engineering, 2013, (3): 53- 57.
10 STELLA J , CEREZO J , RODRIGUEZ E . Characterization of the sensitization degree in the AlSi 304 stainless steel using spectral analysis and conventional ultrasonic techniques[J]. European Journal of Neuron Science, 2009, 42 (4): 267- 274.
11 LEE T H , JHANG K Y . Experimental investigation of nonlinear acoustic effect at crack[J]. NDT & E International, 2009, 42 (8): 757- 764.
12 SAGAR S P , DAS S , PARIDA N , et al. Non-linear ultrasonic technique to assess fatigue damage in structural steel[J]. Scripta Materialia, 2006, 55 (2): 199- 202.
doi: 10.1016/j.scriptamat.2006.03.037
13 CANTRELL J H . Ultrasonic harmonic generation from fatigue-induced dislocation substructures in planar slip metals and assessment of remaining fatigue life[J]. Journal of Applied Physics, 2009, 106 (9): 93516.
doi: 10.1063/1.3254223
14 JAYA RAO V V S , KANNAN E , PRAKASH R V , et al. Fatigue damage characterization using surface acoustic wave nonlinearity in aluminum alloy AA7175-T7351[J]. Journal of Applied Physics, 2009, 104 (12): 123508.
15 邓明晰, 裴俊峰. 无损评价固体板材疲劳损伤的非线性超声兰姆波方法[J]. 声学学报(中文版), 2008, (4): 360- 369.
15 DENG M X , PEI J F . Nondestructive evaluation of fatigue damage in solid plates using nonlinear ultrasonic Lamb wave method[J]. Acta Acoustic, 2008, (4): 360- 369.
16 邝文川. 基于非线性超声纵波的高温蠕变损伤检测与评价研究[D]. 上海: 华东理工大学, 2011.
16 KUANG W C.Ultrasonic testing and evaluation of creep damage based on nonlinear longitude wave technique[D].Shanghai:East China University of Science and Technology, 2011.
17 XIANG Y X , DENG M X , XUAN F Z , et al. Experimental study of thermal degradation in ferrite Cr-Ni alloy steel plates using nonlinear Lamb waves[J]. NDT & E International, 2011, 44 (8): 768- 774.
18 敦怡, 师小红, 徐章遂. 基于二次谐波技术的固体火箭发动机界面粘接质量的超声无损评价[J]. 固体火箭技术, 2008, (2): 198- 200.
18 DUN Y , SHI X H , XU Z S . Ultrasonic nondestructive evaluation on bond quality of SRM interface based on second harmonic technique[J]. Journal of Solid Rocket Technology, 2008, (2): 198- 200.
19 KUNDU T . Ultrasonic nondestructive evaluation:engineering and biological material characterization[M]. Boca Raton, USA: CRC Press Inc, 2003.
20 XIANG Y X , DENG M X , XUAN F Z , et al. Effect of precipitate-dislocation interactions on generation of nonlinear Lamb waves in creep-damaged metallic alloys[J]. Journal of Applied Physics, 2012, 111 (10): 1- 9.
21 束德林, 陈九磅, 凤仪. 工程材料力学性能[M]. 北京: 机械工业出版社, 2007.
22 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2000.
23 乔桂文, 王德和, 曹智本. HK40耐热钢碳化物析出的电镜研究[J]. 金属学报, 1986, 22 (4): 67- 70.
23 QIAO G W , WANG D H , CAO Z B . An EM study of carbide precipitates in HK40 refractory steel[J]. Acta Metallurgica Sinica, 1986, 22 (4): 67- 70.
[1] 刘海定, 陈登华, 何曲波, 郭非, 王东哲, 麻彦龙. 高温熔融玻璃介质中耐热不锈钢腐蚀行为[J]. 材料工程, 2022, 50(9): 150-158.
[2] 杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
[3] 高杰明, 黄晖, 石薇, 魏午, 文胜平, 韩颖, 聂祚仁. 退火处理对含铒Al-Mg-Zn合金组织和性能的影响[J]. 材料工程, 2022, 50(11): 101-108.
[4] 张玉祥, 王任甫, 张由景, 蒋颖, 黄冬. 23Cr-14Ni高氮奥氏体不锈钢σ相析出行为[J]. 材料工程, 2022, 50(11): 135-144.
[5] 王官涛, 周永浪, 赵卓, 王立军, 刘春明. 添加Si对马氏体不锈钢淬火-配分组织和性能的影响[J]. 材料工程, 2021, 49(8): 97-103.
[6] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[7] 王港, 刘秀波, 刘一帆, 祝杨, 欧阳春生, 孟元, 罗迎社. 304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能[J]. 材料工程, 2021, 49(11): 105-115.
[8] 唐全, 张锁德, 徐民, 王建强. 陶瓷颗粒添加对热喷涂不锈钢涂层耐蚀性的影响[J]. 材料工程, 2021, 49(11): 125-135.
[9] 王勉, 刘秀波, 欧阳春生, 罗迎社, 陈德强. 304不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J]. 材料工程, 2021, 49(1): 133-143.
[10] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[11] 姚祥宏, 周琦, 王克鸿, 章晓勇. 基于焊道尺寸控制的电弧增材成形高氮奥氏体不锈钢与316L不锈钢交织结构[J]. 材料工程, 2020, 48(1): 54-60.
[12] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[13] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[14] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
[15] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn