Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 132-137    DOI: 10.11868/j.issn.1001-4381.2016.000130
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
304奥氏体不锈钢晶间腐蚀敏感性的非线性超声表征
侯天宇, 李萍, 陈雷, 赵杰, 李廷举
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Nonlinear Ultrasonic Characterization for Intergranular Corrosion Susceptibility of 304 Austenitic Stainless Steel
HOU Tian-yu, LI Ping, CHEN Lei, ZHAO Jie, LI Ting-ju
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(4462 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用非线性超声检测技术并辅助于XRD与微观组织分析,探讨了在650℃经过2,6,10h敏化处理的304奥氏体不锈钢样品非线性超声特征参数的变化规律。结果表明:随着敏化时间的延长,归一化非线性系数单调增大;相比于固溶试样,经2,6,10h敏化处理后样品的归一化非线性系数分别增加28%,32%,43%,意味着以非线性系数表征304不锈钢的敏化度是可行的。分析认为:晶界析出碳化物(Cr23C6)与奥氏体基体产生的错配引发了局部应变场,干扰了超声波的传播;此外,随敏化时间延长,析出相的增加进一步加剧了超声波的畸变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯天宇
李萍
陈雷
赵杰
李廷举
关键词 不锈钢敏化非线性超声晶间腐蚀    
Abstract:The variation law of nonlinear ultrasonic parameters for the samples sensitized at 650℃ for 2, 6, 10h was discussed using nonlinear ultrasonic testing technique and XRD pattern as well as microstructure. The results indicate that normalized nonlinear parameters(β/β0) of the samples show a monotonous growth trend with the increase of the sensitized time, and normalized nonlinear parameters(β/β0) of the samples sensitized with 2,6,10h increase to 28%, 32% and 43% respectively compared with that of the base material, meaning that it is feasible to use nonlinear parameter to characterize the sensitivity degree. It is analyzed that the mismatch between the carbide (Cr23C6) precipitated on the grain boundary and the austenitic matrix causes the local strain fields which interfere with the propagation of ultrasonic wave in the solid sample. In addition, the increment of precipitation phase exacerbates further the distortion of the ultrasonic with prolonging of the sensitization time.
Key wordsstainless steel    sensitization    nonlinear ultrasound    intergranular corrosion
收稿日期: 2016-01-26      出版日期: 2017-10-18
中图分类号:  TG174.3+3  
  O422.7  
通讯作者: 李萍(1969-),女,副教授,博士,现从事材料无损表征与评价方面研究工作,联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学材料科学与工程学院(116024),E-mail:liping69@dlut.edu.cn     E-mail: liping69@dlut.edu.cn
引用本文:   
侯天宇, 李萍, 陈雷, 赵杰, 李廷举. 304奥氏体不锈钢晶间腐蚀敏感性的非线性超声表征[J]. 材料工程, 2017, 45(10): 132-137.
HOU Tian-yu, LI Ping, CHEN Lei, ZHAO Jie, LI Ting-ju. Nonlinear Ultrasonic Characterization for Intergranular Corrosion Susceptibility of 304 Austenitic Stainless Steel. Journal of Materials Engineering, 2017, 45(10): 132-137.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000130      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/132
[1] FAULKNER R G.Radiation-induced grain boundary segregation in nuclear reactor steels[J].Journal of Nuclear Materials,1997,251:269-275.
[2] 于晓飞.304、316不锈钢晶间腐蚀的实验与理论研究[D].济南:山东大学,2010. YU X F.Study of the intergranular corrosion of stainless steel(304,316) by experimental and theoretical methods[D].Jinan:Shandong University,2010.
[3] PRASANTHI T N,SUDHA C,PARAMESWARAN P,et al.Failure analysis of a 304 steel component aged at 623K[J].Engineering Failure Analysis,2013,31(7):28-39.
[4] FULLER R W,EHRGOTT J Q,HEARD W F,et al.Failure analysis of AlSi 304 stainless steel shaft[J].Engineering Failure Analysis,2008,15(7):835-846.
[5] PARVATHAVARTHINI N,GUPTA R K,KUMAR A V,et al.Interpretation of electrochemical potent ion kinetic reactivation data in the presence of sulphide/oxysulphide inclusions in 316LN stainless steel[J].Corrosion Science,2011,53(10):3202-3214.
[6] 黄彦良,BRIAN K,THOMAS B,等.原子力显微镜评价奥氏体不锈钢晶间腐蚀敏感性的研究[J].材料开发与应用,2008(3):7-11. HUANG Y L,BRIAN K,THOMAS B,et al.Identification of sensitization of austenitic stainless steel to intergranular stress corrosion cracking by atomic force microscopy[J].Development and Application of Materials,2008(3):7-11.
[7] 马红征,杨军红,翟同德,等.304不锈钢晶间腐蚀敏感性的评定[J].理化检验(物理分册),2011(11):686-689. MA H Z,YANG J H,ZHAI T D,et al.Evaluation of intergranular sensitivity of 304 stainless steel[J].Physical Testing and Chemical Analysis(Part A:Physical Testing),2011(11):686-689.
[8] SHAIKH H,SIVAIBHARASI N,SASI B,et al.Use of eddy current testing method in detection and evaluation of sensitization and intergranular corrosion in austenitic stainless steels[J].Corrosion Science,2006,48(6):1462-1482.
[9] 李萍,程向梅,李安娜,等.304不锈钢敏化程度的超声无损表征[J].机械工程材料,2013(3):53-57. LI P,CHENG X M,LI A N,et al.Ultrasonic nondestructive characterization for sensitization degrees of 304 stainless steel[J].Materials for Mechanical Engineering,2013(3):53-57.
[10] STELLA J,CEREZO J,RODRIGUEZ E.Characterization of the sensitization degree in the AlSi 304 stainless steel using spectral analysis and conventional ultrasonic techniques[J].European Journal of Neuron Science,2009,42(4):267-274.
[11] LEE T H,JHANG K Y.Experimental investigation of nonlinear acoustic effect at crack[J].NDT & E International,2009,42(8):757-764.
[12] SAGAR S P,DAS S,PARIDA N,et al.Non-linear ultrasonic technique to assess fatigue damage in structural steel[J].Scripta Materialia,2006,55(2):199-202.
[13] CANTRELL J H.Ultrasonic harmonic generation from fatigue-induced dislocation substructures in planar slip metals and assessment of remaining fatigue life[J].Journal of Applied Physics,2009,106(9):93516.
[14] JAYA RAO V V S,KANNAN E,PRAKASH R V,et al.Fatigue damage characterization using surface acoustic wave nonlinearity in aluminum alloy AA7175-T7351[J].Journal of Applied Physics,2009,104(12):123508.
[15] 邓明晰,裴俊峰.无损评价固体板材疲劳损伤的非线性超声兰姆波方法[J].声学学报(中文版),2008(4):360-369. DENG M X,PEI J F.Nondestructive evaluation of fatigue damage in solid plates using nonlinear ultrasonic Lamb wave method[J].Acta Acoustic,2008(4):360-369.
[16] 邝文川.基于非线性超声纵波的高温蠕变损伤检测与评价研究[D].上海:华东理工大学,2011. KUANG W C.Ultrasonic testing and evaluation of creep damage based on nonlinear longitude wave technique[D].Shanghai:East China University of Science and Technology,2011.
[17] XIANG Y X,DENG M X,XUAN F Z,et al.Experimental study of thermal degradation in ferrite Cr-Ni alloy steel plates using nonlinear Lamb waves[J].NDT & E International,2011,44(8):768-774.
[18] 敦怡,师小红,徐章遂.基于二次谐波技术的固体火箭发动机界面粘接质量的超声无损评价[J].固体火箭技术,2008(2):198-200. DUN Y,SHI X H,XU Z S.Ultrasonic nondestructive evaluation on bond quality of SRM interface based on second harmonic technique[J].Journal of Solid Rocket Technology,2008(2):198-200.
[19] KUNDU T.Ultrasonic nondestructive evaluation:engineering and biological material characterization[M].Boca Raton,USA:CRC Press Inc,2003.
[20] XIANG Y X,DENG M X,XUAN F Z,et al.Effect of precipitate-dislocation interactions on generation of nonlinear Lamb waves in creep-damaged metallic alloys[J].Journal of Applied Physics,2012,111(10):1-9.
[21] 束德林,陈九磅,凤仪.工程材料力学性能[M].北京:机械工业出版社,2007.
[22] 胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2000.
[23] 乔桂文,王德和,曹智本.HK40耐热钢碳化物析出的电镜研究[J].金属学报,1986,22(4):67-70. QIAO G W,WANG D H,CAO Z B.An EM study of carbide precipitates in HK40 refractory steel[J].Acta Metallurgica Sinica,1986,22(4):67-70.
[1] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[2] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[3] 张晴, 黄其煜. 碳材料在染料敏化太阳能电池和钙钛矿太阳能电池对电极中的应用进展[J]. 材料工程, 2018, 46(5): 56-63.
[4] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[5] 许婷, 方晓英, 朱言利, 王铭, 尹文红, 郭红. 双相不锈钢中奥氏体沉淀相的晶粒取向及界面特征分布[J]. 材料工程, 2018, 46(2): 34-40.
[6] 李凯尚, 彭剑, 彭健. 预应变对奥氏体不锈钢力学行为的影响及本构模型的构建[J]. 材料工程, 2018, 46(11): 148-154.
[7] 刘铭, 李惠曲, 陈军洲, 李国爱, 陈高红. 航空用7475-T7351铝合金厚板耐腐蚀性能[J]. 材料工程, 2017, 45(9): 129-135.
[8] 李智敏, 李钊颖, 张茂林, 王媛, 黄云霞. 量子点敏化太阳能电池光阳极的研究进展[J]. 材料工程, 2017, 45(8): 132-138.
[9] 柳建, 朱胜, 蔡志海, 张平, 刘军, 秦航, 仝永刚. FV520B沉淀硬化不锈钢的MAG堆焊再制造力学特性[J]. 材料工程, 2017, 45(10): 23-31.
[10] 刘晓艳, 王召朋, 龙亮, 张喜亮, 崔好选, 高飞. Mg与Ag含量对Al-Cu-Mg-Ag新型耐热铝合金晶间腐蚀性能的影响[J]. 材料工程, 2016, 44(9): 68-75.
[11] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[12] 金贺荣, 杨旭坤, 宜亚丽. 316L-Q345R不锈钢复合板性能评价[J]. 材料工程, 2016, 44(8): 104-110.
[13] 王永强, 李娜, 杨滨, 孙立, 林苏华. 核电管道不锈钢中σ相的退火消除及脆性恢复[J]. 材料工程, 2016, 44(5): 29-36.
[14] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[15] 乔瑞芳, 毕洪运, 陈玉喜. Ti,Nb和W复合强化超纯铁素体不锈钢的高温析出行为[J]. 材料工程, 2016, 44(5): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn