Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 83-91    DOI: 10.11868/j.issn.1001-4381.2016.000147
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热塑性复合材料自动铺放过程中温度场研究
宋清华, 肖军, 文立伟, 王显峰, 范珏雯, 石甲琪
南京航空航天大学 材料科学与技术学院, 南京 210016
Temperature Field During Automated Fiber Placement for Thermoplastic Composite
SONG Qing-hua, XIAO Jun, WEN Li-wei, WANG Xian-feng, FAN Jue-wen, SHI Jia-qi
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(4121 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 自动铺放成型技术可以实现热塑性复合材料逐层"原位固结",在加工制造大型零部件、提高生产率、降低制造成本方面具有巨大的潜力。由于温度历程对复合材料构件成型质量有较大影响,本工作通过ANSYS软件模拟热源随铺放头移动、铺放过程中预浸料不断被铺叠到底层预浸料上,获得复合材料铺层的温度场分布情况。同时构建基于WinCC flexible的温度场在线测量系统,对铺层温度进行在线采集和存储。实验结果表明,在铺放成型过程中,每一层预浸料的温度曲线出现多个峰值,且随着热气温度的升高,每层峰值温度逐渐增加,热气温度越高,铺层间峰值温度差越大,热电偶测量结果与仿真结果相差越小。通过对实验结果中的峰值温度与有限元模拟结果进行对比,证明了有限元仿真模型的正确性。研究结果表明,随着铺放速率的加快,每层峰值温度逐渐降低,为满足成型要求,当热风枪出口处热气温度最高为600℃时,最大铺放速率为1.2m/min。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋清华
肖军
文立伟
王显峰
范珏雯
石甲琪
关键词 热塑性复合材料自动铺放有限元温度场    
Abstract:The Automated Fiber Placement (AFP) of thermoplastic composite (TPC) realizes in-situ crystallization layer by layer and offers the potential to increase production rate and significantly reduces manufacturing cost when processing of large parts. Desired quality of composite parts depends intensively on the thermal history of the AFP, the heater moving with the AFP head and the case of layer continuously being added on bottom prepreg were simulated by the ANSYS software to obtain the temperature field distribution in the laminate. At the same time, a real-time temperature measurement system based on WinCC flexible was established, aiming at acquiring and memorizing the temperature during the experiments. The results show that the temperature curves of each layer appear several peaks and the peaks are gradually increasing with the increase of the temperature of hot gas, the higher the temperature of hot gas is, the bigger the peak temperature difference is and the smaller the difference between thermocouple and simulation is. The finite element simulation results are verified to be correct by comparing the peak temperature of the experimental results with the finite element simulation results. The results show that peaks are gradually decreasing with the increase of the speed of roll. In order to meet the requirements of the component, the maximum speed is 1.2m/min when the temperature of hot gas is 600℃.
Key wordsthermoplastic composite    automated fiber placement    finite element    temperature field
收稿日期: 2016-02-01      出版日期: 2018-01-18
中图分类号:  TB332  
  V261  
通讯作者: 肖军(1959-),男,教授,硕士,研究方向:先进复合材料制造技术,联系地址:江苏省南京市白下区御道街29号316信箱(210016),E-mail:j.xiao@nuaa.edu.cn     E-mail: j.xiao@nuaa.edu.cn
引用本文:   
宋清华, 肖军, 文立伟, 王显峰, 范珏雯, 石甲琪. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1): 83-91.
SONG Qing-hua, XIAO Jun, WEN Li-wei, WANG Xian-feng, FAN Jue-wen, SHI Jia-qi. Temperature Field During Automated Fiber Placement for Thermoplastic Composite. Journal of Materials Engineering, 2018, 46(1): 83-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000147      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/83
[1] 肖军, 张建宝, 李勇, 等. 自动铺带技术研究现状[J]. 航空制造技术, 2008(25):126-128. XIAO J, ZHANG J B, LI Y, et al. Research status of automatic tape-laying technology[J]. Aeronautical Manufacturing Technology, 2008(25):126-128.
[2] 肖军, 李勇, 文立伟, 等. 树脂基复合材料自动铺放技术进展[J]. 中国材料进展, 2009, 28(6):28-32. XIAO J, LI Y, WEN L W, et al. Progress of automated placement technology for polymer composites[J]. Materials China, 2009, 28(6):28-32.
[3] 韩振宇,孙守政,付云忠,等.热塑性FRP自动铺放成型缺陷的多尺度研究进展[J].材料工程,2017,45(7):118-127. HAN Z Y,SUN S J,FU Y Z,et al.Multi-scale research progress of manufacturing defects for thermoplastic FRP fabricated by automated fiber placement[J].Journal of Materials Engineering, 2017,45(7):118-127.
[4] 宋清华, 文立伟, 严飙, 等. 热塑性树脂基复合材料自动铺带技术[J]. 航空制造技术, 2011(15):42-44. SONG Q H, WEN L W, YAN B, et al. Automated tape laying technology of thermoplastic and resin-based composites[J]. Aeronautical Manufacturing Technology, 2011(15):42-44.
[5] 张婷. 高性能热塑性复合材料在大型客机结构件上的应用[J]. 航空制造技术, 2013(15):32-35. ZHANG T. Applications of high performance thermoplastic composites for commercial airplane structural component[J]. Aeronautical Manufacturing Technology, 2013(15):32-35.
[6] 宋清华, 肖军, 文立伟, 等. 玻璃纤维增强热塑性塑料在航空航天领域中的应用[J]. 玻璃纤维, 2012(6):40-43. SONG Q H, XIAO J, WEN L W, et al. Applications of glass fiber reinforced thermoplastics in aerospace sector[J]. Fiber Glass, 2012(6):40-43.
[7] 迪力穆拉提·阿卜力孜,段玉岗,李涤尘,等. 树脂基复合材料原位固化制造技术概述[J].材料工程,2011(10):84-90. ABULIZI D, DUAN Y G, LI D C, et al. Overview of in-situ curing manufacturing technology for resin matrix composites[J]. Journal of Materials Engineering, 2011(10):84-90.
[8] 谢薇. 新型热塑性复合材料设计概念及其自动化生产[J].玻璃钢,2010(4):18-21. XIE W. New thermoplastic composites design concepts and their automated manufacture[J]. Reinforced Plastics, 2010(4):18-21.
[9] 韩振宇,李玥华,富宏亚,等. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012(2):91-96. HAN Z Y, LI Y H, FU H Y, et al. Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering, 2012(2):91-96.
[10] JOHN T, GILLESPIE J W. Modeling of in situ strength development for the thermoplastic composite tow placement process[J]. Journal of Composite Materials, 2006, 40(16):1487-1506.
[11] GROVE S M. Thermal modeling of tape laying with continuous carbon fiber reinforced thermoplastic[J]. Composites, 1988, 19(5):367-375.
[12] TUMKOR S, TURKMEN N, CHASSAPIS C, et al. Modeling of heat transfer in thermoplastic composite tape lay-up manufacturing[J]. Heat Mass Transfer, 2001, 28(1):49-58.
[13] NOHA H, JOSEPH E T, BATRA R C, et al. A heat transfer analysis of the fiber placement composite manufacturing process[J]. Journal of Reinforced Plastics and Composites, 2005, 24(8):869-887.
[14] LI Z M, YANG T, DU Y. Dynamic finite element simulation and transient temperature field analysis in thermoplastic composite tape lay-up process[J]. Journal of Thermoplastic Composite Materials, 2015, 28(4):558-573.
[15] 李志猛, 杨涛, 杜宇, 等. 热塑性预浸丝铺放过程中温度场数学模型及其仿真[J]. 宇航材料工艺, 2012, 42(3):20-23. LI Z M, YANG T, DU Y, et al. Modeling and simulation of heat transfer in thermoplastic composite tow-placement process[J]. Aerospace Materials & Technology, 2012, 42(3):20-23.
[16] 李玥华. 热塑性预浸丝变角度铺放及其轨迹规划的研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LI Y H. Research on thermoplastic towpreg variable angle placement and trajectory planning[D]. Harbin:Harbin Institute of Technology, 2013.
[17] YARDIMCI M A, PISTOR C M, SELCUK I. Process planning for on-line consolidation in tape winding of noncircular thermoplastic composites[J]. Journal of Manufacturing Processes, 2000, 2(2):88-99.
[18] ABHIJIT P D, JAMES C S. Crystallizability in a model high-performance thermoplastic polyimide-matrix composite[J]. Journal of Thermoplastic Composite Materials, 1999, 12(6):498-514.
[1] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[2] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[3] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[4] 孙卫青, 程伟. 基于响应面全局优化技术的蜂窝板材料性能参数修正[J]. 材料工程, 2019, 47(5): 159-166.
[5] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[6] 鹿旭飞, 林鑫, 马良, 曹阳, 黄卫东. 扫描路径对激光立体成形TC4构件热-力场的影响[J]. 材料工程, 2019, 47(12): 55-62.
[7] 吴旺青, 刘毅, 向阳辉, 付继先. 环形对苯二甲酸丁二醇酯与催化剂混合体系的流变性能[J]. 材料工程, 2019, 47(10): 154-159.
[8] 宋清华, 刘卫平, 肖军, 陈萍, 杨洋, 陈吉平. 热塑性复合材料自动铺放过程中红外加热技术研究[J]. 材料工程, 2019, 47(1): 77-83.
[9] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[10] 宋清华, 肖军, 文立伟, 王显峰, 赵聪, 褚奇奕. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4): 120-126.
[11] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[12] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[13] 韩振宇, 孙守政, 付云忠, 富宏亚. 热塑性FRP自动铺放成型缺陷的多尺度研究进展[J]. 材料工程, 2017, 45(7): 118-127.
[14] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[15] 任维彬, 董世运, 徐滨士, 任君华, 郑显柱, 童继凤. 连续/脉冲激光再制造FeCrNiCu合金成形层温度场研究[J]. 材料工程, 2017, 45(5): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn