Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 95-102    DOI: 10.11868/j.issn.1001-4381.2016.000170
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
航空紧固件用Ti-5553合金的组织和性能
赵庆云1, 由洋2, 王立东1, 董利民3, 刘风雷1
1 中航工业北京航空制造工程研究所 机械连接技术研究室, 北京 100024;
2 中航工业北京航空制造工程研究所 理化检测中心, 北京 100024;
3 中国科学院 金属研究所, 沈阳 110016
Microstructure and Properties of Ti-5553 Alloy for Aerospace Fasteners
ZHAO Qing-yun1, YOU Yang2, WANG Li-dong1, DONG Li-min3, LIU Feng-lei1
1 Department of Mechanical Joining, AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China;
2 Testing Center, AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China;
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(19496 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用扫描电镜和透射电子显微镜研究不同热处理制度对Ti-5553高强钛合金显微组织与力学性能的影响。结果表明:在(α+β)两相区进行固溶处理时,随着固溶温度的升高,Ti-5553合金组织中的初生α相含量逐渐减少,β相的尺寸和体积分数均增加,合金强度逐渐降低。时效后β基体发生转变,晶界和晶内析出大量次生α相。次生α相的尺寸对力学性能产生重要影响,随着时效温度的升高,次生α相逐渐粗化,导致抗拉强度逐渐下降。1240MPa级航空紧固件用Ti-5553的固溶温度应选择Tβ以下,使组织中留有足够的β相,从而时效时在β相中有大量次生α相析出,获得需要的高强度。同时,保留一定含量的初生α相,以便获得良好的塑韧性。经810~820℃,1.5h,水淬+510℃,10h,空冷热处理后,合金可以获得较好的综合性能,抗拉强度达1500MPa,伸长率达14.8%,断面收缩率为38.6%。固溶和时效态的拉伸断口均存在大量韧窝,材料具有良好的塑韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵庆云
由洋
王立东
董利民
刘风雷
关键词 高强钛合金紧固件Ti-5553显微组织力学性能    
Abstract:The effect of heat treatment on microstructure and mechanical properties of Ti-5553 alloy was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that when the alloy is treated in α+β phase zone, tensile strength decreases with raising solution temperature due to decreasing the content of primary α-phase and increasing the size and volume fraction of β phase. A lot of secondary α-phase precipitates from grain boundary and intragranular with β phase transformation during aging treatment. The size of secondary α-phase has significant influence on tensile strength, secondary α-phase coarsens gradually with the increase of aging temperature, resulting in the decrease of tensile strength. It is suggested that for 1240MPa aerospace fasteners the solution temperature of Ti-5553 should be under Tβ, thus adequate β phase, where a lot of secondary α phase precipitates from, is good for the required high strength. Meanwhile, a certain percentage of primary α-phase is kept for acquiring good ductility and toughness. After solution treatment at 810-820℃ for 1.5h, water quenching plus aging at 510℃ for 10h, Ti-5553 shows a better mechanical property with tensile strength 1500MPa, elongation 14.8% and reduction of cross-section area 38.6%. Lots of dimples can be found in tensile fracture after solution treatment and solution+aging treatment, which demonstrate Ti-5553 with good ductility and toughness.
Key wordshigh-strength titanium alloy    fastener    Ti-5553    microstructure    mechanical property
收稿日期: 2016-02-03      出版日期: 2017-10-18
中图分类号:  TG146.2+3  
通讯作者: 赵庆云(1969-),女,硕士,研究员,主要从事航空紧固件的开发和长寿命机械连接技术研究工作,联系地址:北京市340信箱109室(100024),E-mail:zhaoqybj@163.com     E-mail: zhaoqybj@163.com
引用本文:   
赵庆云, 由洋, 王立东, 董利民, 刘风雷. 航空紧固件用Ti-5553合金的组织和性能[J]. 材料工程, 2017, 45(10): 95-102.
ZHAO Qing-yun, YOU Yang, WANG Li-dong, DONG Li-min, LIU Feng-lei. Microstructure and Properties of Ti-5553 Alloy for Aerospace Fasteners. Journal of Materials Engineering, 2017, 45(10): 95-102.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000170      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/95
[1] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4):44-50. ZHU Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34(4):44-50.
[2] 赵永庆, 葛鹏. 我国自主研发钛合金现状与进展[J]. 航空材料学报, 2014, 34(4):51-61. ZHAO Y Q, GE P. Current situation and development of new titanium alloys invented in China[J]. Journal of Aeronautical Materials, 2014, 34(4):51-61.
[3] 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8):1-10. CAI J M, MI G B, GAO F, et al. Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering, 2016, 44(8):1-10.
[4] FANNING J, ZENG L, NYAKANA S. Properties and microstructure of Ti-555 for fasteners[C]//Ti-2007 Science and Technology. Kyoto:The Japan Institute of Metals, 2007:1263-1266.
[5] JONES N G, DASHWOOD R J, JACKSON M, et al. β phase decomposition in Ti-5Al-5Mo-5V-3Cr[J]. Acta Materialia, 2009, 57(4):3830-3839.
[6] GERDAY A F, BETTAIEB M B, DUCHENE L, et al. Interests and limitations of nanoindentation for bulk multiphase material identification:application to the β phase of Ti-5553[J]. Acta Materialia, 2009, 57(7):5186-5195.
[7] JONES N G, DASHWOOD R J, DYE D, et al. The flow behavior and microstructural evolution of Ti-5Al-5Mo-5V-3Cr during subtransus isothermal forging[J]. Metallurgical and Materials Transactions A, 2009, 40(8):1944-1954.
[8] VEECK S, LEE D, BOYER R, et al. The castability of Ti-5553 alloy[J]. Advanced Materials & Processes, 2004, 10:47-49.
[9] FANNING J C. Properties of TIMETAL555(Ti-5Al-5Mo-5V-3Cr-0.6Fe)[J]. Journal of Materials Engineering and Performance, 2005, 14(6):788-791.
[10] 崔雪飞, 米绪军, 惠松骁, 等. Cr含量对Ti5Mo5V3Al-xCr系合金组织及性能的影响[J]. 航空材料学报, 2015, 35(3):35-42. CUI X F, MI X J, HUI S X, et al. Effects of Cr content on microstructure and mechanical properties of Ti5Mo5V3Al-xCr alloys[J]. Journal of Aeronautical Materials, 2015, 35(3):35-42.
[11] 贾亮, 汤慧萍, 石英, 等. Ti-5553合金车削加工性能研究[J]. 钛工业进展, 2014, 31(4):100-103. JIA L, TANG H P, SHI Y, et al. Study on turning performance of Ti5553 alloy[J]. Titanium Industry Progress, 2014, 31(4):100-103.
[12] 周伟, 葛鹏, 赵永庆, 等. Ti-5553合金高温变形时动态再结晶行为[J]. 稀有金属材料与工程, 2012,41(8):1381-1384. ZHOU W, GE P, ZHAO Y Q, et al. The dynamic recrystallization behavior of Ti-5553 titanium alloy during hot deformation[J]. Rare Metal Materials and Engineering, 2012, 41(8):1381-1384.
[13] 王斌, 张凯锋, 蒋少松, 等. 固溶温度对Ti2AlNb基合金组织演变的影响[J]. 航空材料学报, 2015, 35(3):7-12. WANG B, ZHANG K F, JIANG S S, et al. Effect of solution treatment temperature on microstructural evolution of Ti2AlNb-based alloy[J]. Journal of Aeronautical Materials, 2015, 35(3):7-12.
[14] 赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙:中南大学出版社, 2012:147. ZHAO Y Q, CHEN Y N, ZHANG X M, et al. Phase transformation and heat treatment of titanium alloys[M]. Changsha:Central South University Press, 2012:147.
[15] WELK B A, FRASER H L, WILLIAMS J C. Microstructural and property relationships in β-titanium alloy Ti-5553[D]. Columbus:The Ohio State University, 2010.
[16] PANZA-GIOSA R, WANG Z, EMBURY D. A study of the microstructural and property in Ti-5Al-5Mo-5V-3Cr-0.5Fe β-titanium alloy[D]. Hamilton:McMaster University & University of Toronto, 2009.
[17] NAG S, BANERJEE R, SRINIVASAN R, et al. ω-assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy[J]. Acta Materialia, 2009, 57(1):2136-2147.
[18] JONES N G, DASHWOOD R J, JACKSON M, et al. Development of chevron-shaped α precipitates in Ti-5Al-5Mo-5V-3Cr[J]. Scripta Materialia, 2009, 60(7):571-573.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[7] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[8] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[14] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[15] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn