Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 99-105    DOI: 10.11868/j.issn.1001-4381.2016.000175
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管纸/纳米硅复合电极的锂离子电池性能
刘珍红, 孙晓刚, 陈珑, 邱治文, 蔡满园
南昌大学 机电工程学院, 南昌 330031
Performance of Lithium Ion Batteries with Carbon Nanotube Paper/Nano Silicon Composite Electrode
LIU Zhen-hong, SUN Xiao-gang, CHEN Long, QIU Zhi-wen, CAI Man-yuan
School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(3317 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用纳米硅和多壁碳纳米管(MWCNTs)复合材料作为活性材料,以纸纤维为基体,MWCNTs为导电剂制得的MWCNTs导电纸代替铜箔集流体应用于硅基锂离子电池。采用扫描电子显微镜、透射电子显微镜、恒流放电测试、电化学阻抗对复合材料的形貌和电化学性能进行分析。结果表明,采用MWCNTs导电纸-纳米硅复合的锂离子电池在80mA/g的电流密度下,循环50次后比容量达到约1000mAh/g,在2000mA/g大电流密度下仍保持好的循环稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘珍红
孙晓刚
陈珑
邱治文
蔡满园
关键词 纳米硅碳纳米管导电纸集流体锂离子电池    
Abstract:Nano silicon and multiwalled carbon nanotubes(MWCNTs) composites were used as active materials, paper fiber as substrate, MWCNTs as conductive agent, MWCNTs conductive paper was obtained to replace the copper foil current collector and applied in silicon based lithium ion battery. The morphology and the electrochemical performance of the composites were analyzed by scanning electron microscopy (SEM),transmission electron microscopy(TEM), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy(EIS) tests. The results indicate that the lithium ion battery with MWCNTS paper/nano silicon composites reaches a specific capacity of about 1000mAh/g after 50 cycles in the current density of 80mA/g, and has good cycle stability even in the high current density of 2000mA/g.
Key wordsnano silicon    carbon nanotubes    conductive paper fiber    current collector    lithium ion battery
收稿日期: 2016-02-04      出版日期: 2018-01-18
中图分类号:  TM911  
  TB383  
通讯作者: 孙晓刚(1957-),男,教授,主要从事碳纳米管和锂离子电池研究,地址:江西省南昌市红谷滩新区学府大道999号南昌大学机电学院(330031),E-mail:xiaogangsun@163.com     E-mail: xiaogangsun@163.com
引用本文:   
刘珍红, 孙晓刚, 陈珑, 邱治文, 蔡满园. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1): 99-105.
LIU Zhen-hong, SUN Xiao-gang, CHEN Long, QIU Zhi-wen, CAI Man-yuan. Performance of Lithium Ion Batteries with Carbon Nanotube Paper/Nano Silicon Composite Electrode. Journal of Materials Engineering, 2018, 46(1): 99-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000175      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/99
[1] GAO L, LIU S, DOUGAL R A. Dynamic lithiumi on battery model for system simulation[J]. IEEE Transactions on Components & Packaging Technologies, 2002, 25(3):495-505.
[2] ARMAND M, TARASCON J M. Building better batteries[J]. Nature,2008, 451(7179):652-653.
[3] LEE S W, GALLANT B M, LEE Y, et al. Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries[J]. Energy & Environmental Science, 2012, 5(1):5437-5444.
[4] 姜贵文,黄菊花.膨胀石墨/石蜡复合材料的制备及热管理性能[J].材料工程,2017,45(7):41-47. JIANG G W, HUANG J H.Preparation and thermal management of expanded graphite/paraffin composite for Li-ion battery[J]. Journal of Materials Engineering,2017,45(7):41-47.
[5] SCROSATI B, GARCHE J. Lithium batteries:status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430.
[6] MAROM R, AMALRAJ S F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27):9938-9954.
[7] LIANG B, LIU Y, XU Y. Silicon-based materials as high capacity anodes for next generation lithium ion batteries[J]. Journal of Power Sources, 2014, 267:469-490.
[8] WEN Z, LU G, MAO S, et al. Silicon nanotube anode for lithium-ion batteries[J]. Electrochemistry Communications, 2013, 29(10):67-70.
[9] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35.
[10] SU X, WU Q, LI J, et al. Silicon-based nanomaterials for lithium-ion batteries:a review[J]. Advanced Energy Materials, 2014, 4(1):375-379.
[11] DIMOV N, XIA Y, YOSHIO M. Practical silicon-based composite anodes for lithium-ion batteries:fundamental and technological features[J]. Journal of Power Sources, 2007, 171(2):886-893.
[12] HOLZAPFEL M, BUQA H, HARDWICK L J, et al. Nano silicon for lithium-ion batteries[J]. Electrochimica Acta, 2006, 52(3):973-978.
[13] ZHANG Y, ZHANG X G, ZHANG H L, et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries[J]. Electrochimica Acta, 2006, 51(23):4994-5000.
[14] LI X, YAN C, WANG J, et al. Stable silicon anodes for lithium-ion batteries using mesoporous metallurgical silicon[J]. Advanced Energy Materials, 2015, 5(4):1-6.
[15] YIN Y X, GUO Y G. Silicon-based nanomaterials for lithium-ion batteries[J]. Chinese Science Bulletin, 2012, 57(32):4104-4110.
[16] 梁剑文. 硅纳米负极材料的化学法制备及其锂离子电池性能[D]. 合肥:中国科学技术大学, 2015. LIANG J W. Chemical synthesis of nano-silicon materials and their lithium in batteries property[D]. Hefei:University of Science and Technology of China,2015.
[17] YAN Y, McDOWELL M T, RYU I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano Letters, 2011, 11(7):2949-2954.
[18] WANG B, LI X, LUO B, et al. Approaching the downsizing limit of silicon for surface-controlled lithium storage.[J]. Advanced Materials, 2015, 27(9):1526-1532.
[19] KWON Y K, TOMANEK D. Electronic and structural properties of multiwall carbon nanotubes[J]. Physical Review B, 1998, 58(24):16001-16004.
[20] AJAYAN P M. Nanotubes from carbon[J]. Chemical Reviews, 1999, 99(7):1787-1800.
[21] DAI H J. Carbon nanotubes:opportunities and challenges[J].Surface Science, 2002, 500(1-3):218-222.
[22] BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297(5582):787-792.
[23] THOSTENSON E T, REN Z, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites:a review[J]. Composites Science and Technology, 2001, 61(13):1899-1912.
[24] 邓凌峰,彭辉艳,谭昱焜,等.碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4):121-127. DENG L F,PENG H Y,TAN Y K,et al.Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance[J]. Journal of Materials Engineering, 2017, 45(4):121-127.
[25] YOON S, LEE S, KIM S, et al. Carbon nanotube film anodes for flexible lithium ion batteries[J]. Journal of Power Sources, 2015, 279:495-501.
[26] GAO H, HOU F, ZHENG X, et al. Electrochemical property studies of carbon nanotube films fabricated by CVD method as anode materials for lithium-ion battery applications[J]. Vacuum, 2015, 112:1-4.
[27] 刘芯言, 彭翃杰, 黄佳琦,等. 碳纳米管在柔性储能器件中的应用进展[J]. 储能科学与技术, 2013(5):433-450. LIU X Y,PENG Y J,HUANG J Q, et al. Carbon nanotubes for flexible energy storage devices-a review[J].Energy Storage Science and Technology, 2013(5):433-450.
[28] SALAJKOVA M, VALENTINI L, ZHOU Q, et al. Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes[J]. Composites Science and Technology, 2013, 87:103-110.
[29] CHENG Q, SONG Z, MA T, et al. Folding paper-based lithium-ion batteries for higher areal energy densities[J]. Nano Letters, 2013, 13(10):4969-4974.
[30] SONG B, FANG H, YANG J, et al. Intercalation and diffusion of lithium ions in a carbon nanotube bundle by ab initio molecular dynamics simulations[J]. Energy & Environmental Science, 2011, 4(4):1379-1384.
[31] ZHOU Z, XU Y, LIU W, et al. High capacity Si/DC/MWCNTs nanocomposite anode materials for lithium ion batteries[J]. Journal of Alloys & Compounds, 2010, 493(1/2):636-639.
[32] 倪江锋, 周恒辉, 陈继涛,等. 锂离子电池集流体的研究[J]. 电池, 2005(2):128-130. NI J F,ZHOU H H,CHEN J T,et al.Study of current collectors for Li-ion batteries[J].Battery Bimonthly,2005(2):128-130.
[1] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[2] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[3] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[4] 刘扶庆, 刘夏, 杨庆生. 碳纳米管纤维力-电耦合效应的实验研究[J]. 材料工程, 2018, 46(9): 31-38.
[5] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[6] 杨朝, 杨金萍, 王静, 姚少巍, 刘刚. 空心球Fe3O4&海绵状碳复合材料制备及其电化学性能表征[J]. 材料工程, 2018, 46(6): 43-50.
[7] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[8] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[9] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
[10] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[11] 韩宝帅, 薛祥, 赵志勇, 牛涛, 曲海涛, 徐严谨, 侯红亮. 碳纳米管纤维与薄膜致密化研究现状[J]. 材料工程, 2018, 46(11): 37-44.
[12] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[13] 袁琦, 邹正光, 万振东, 韩世昌. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1): 106-113.
[14] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[15] 杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn