Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (5): 20-30    DOI: 10.11868/j.issn.1001-4381.2016.000220
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
铈离子对高强铝合金应力腐蚀开裂的缓蚀作用
李文婷1, 王浩伟2, 余军1, 董泽华1,3,*(), 郭兴蓬1
1 华中科技大学 化学与化工学院 材料化学与服役失效湖北省重点实验室, 武汉 430074
2 中航工业特种飞行器研究所, 湖北 荆门 448000
3 湖北文理学院 化工与食品学院, 湖北 襄阳 433500
Inhibition of Ce3+ on Stress Corrosion Crack of High Strength Aluminum Alloy
Wen-ting LI1, Hao-wei WANG2, Jun YU1, Ze-hua DONG1,3,*(), Xing-peng GUO1
1 Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 AVIC Special Vehicle Research Institute, Jingmen 448000, Hubei, China
3 School of Chemical and Food Sciences, Hubei Institute of Arts, Xiangyang 433500, Hubei, China
全文: PDF(8887 KB)   HTML ( 8 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于慢应变速率拉伸实验(SSRT),采用恒电流极化、电化学噪声(ECN)与电化学阻抗(EIS)等方法,研究7A04铝合金在3.5%(质量分数)NaCl水溶液中的应力腐蚀开裂(SCC)行为以及Ce3+对其SCC的缓蚀作用,探讨Ce3+对裂纹孕育与发展过程的抑制机理。结果表明:无论是阳极还是阴极极化,均会促进7A04的SCC倾向,前者增加了裂尖的阳极溶解,后者则加速了裂尖的氢脆效应。Ce3+的加入能延缓7A04的SCC断裂时间,但其有效性仅限于裂纹的萌生阶段。由于Ce3+能够抑制铝合金表面的亚稳态点蚀发育和长大,因而使裂纹的孕育时间显著延长,降低了SCC的敏感性。不过一旦裂纹进入扩展阶段或者试样表面有预裂纹,则由于Ce3+很难迁移到裂纹尖端或在裂尖区难以成膜,不能对裂纹的生长起到有效抑制作用,因而无法降低7A04的SCC发展速率。SEM分析表明7A04铝合金光滑试样SCC主要源于亚稳态或稳态点蚀的诱导作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文婷
王浩伟
余军
董泽华
郭兴蓬
关键词 铝合金应力腐蚀电化学噪声点蚀缓蚀剂    
Abstract

The stress corrosion cracking (SCC) susceptibility of 7A04 high strength aluminum alloy in 3.5% (mass fraction) NaCl solution and the Ce3+ inhibition of SCC were investigated by slow stress rate test(SSRT), using constant current polarization, electrochemical noise (ECN) and electrochemical impedance spectroscopy (EIS) techniques. The inhibition mechanism of Ce3+ ions on the initiation and propagation of cracking was also analyzed. The results indicate that both anodic and cathodic galvanostatic polarizations can accelerate the SCC of 7A04, the former increases anodic dissolution but the latter accelerates hydrogen embrittlement of crack tip. SCC susceptibility of 7A04 can be reduced effectively by the addition of cerium ions, the fracture time is delayed and slowed down, but only during the initiation other than the propagation stage of cracking. Ce3+ ions can restrain the initiation of metastable pitting on the surface of 7A04 specimen, which therefore increase the induction time of the cracking since that the micro pits are usually the source of cracking.However, once the crack begins to propagate or the specimen is notched, the addition of cerium ions can rarely inhibit the cracking process. This is possibly attributed to that the radius of Ce3+ ion is too large to diffuse into the crack tip or it is hard to form protective CeO2 layer, Ce3+ ion therefore fails to rehabilitate the active alloy at the crack tip and further reduce the SCC developing rate of 7A04. SEM also indicates that the crack initiation of smooth 7A04 specimens is mainly induced by metastable or stable pits.

Key wordsaluminium alloy    SCC    electrochemical noise    pitting corrosion    inhibitor
收稿日期: 2016-03-02      出版日期: 2017-05-17
中图分类号:  O69  
基金资助:国家自然科学基金资助项目(51371087)
通讯作者: 董泽华     E-mail: zehua.dong@gmail.com
作者简介: 董泽华(1968-), 男, 博士, 教授, 主要从事金属腐蚀与防护、腐蚀电化学、电化学科学仪器以及工业腐蚀监测方法等领域的研究, 联系地址:湖北省武汉市洪山区珞喻路华中科技大学化学与化工学院(430074), E-mail:zehua.dong@gmail.com
引用本文:   
李文婷, 王浩伟, 余军, 董泽华, 郭兴蓬. 铈离子对高强铝合金应力腐蚀开裂的缓蚀作用[J]. 材料工程, 2017, 45(5): 20-30.
Wen-ting LI, Hao-wei WANG, Jun YU, Ze-hua DONG, Xing-peng GUO. Inhibition of Ce3+ on Stress Corrosion Crack of High Strength Aluminum Alloy. Journal of Materials Engineering, 2017, 45(5): 20-30.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000220      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/20
Zn Mg Cu Fe Si Mn Cr Ti Al
5.75 2.30 1.72 0.31 0.09 0.33 0.15 0.03 Bal
Table 1  7A04铝合金化学成分(质量分数/%)
Fig.1  慢拉伸试样的尺寸    (a)光滑试样;(b)缺口试样
Fig.2  7A04铝合金在恒电流阳极极化作用下的SSRT曲线(a)及SCC敏感因子比较(b)
Fig.3  阳极恒电流极化作用下7A04铝合金拉伸试样断口SEM形貌    (a)自然腐蚀状态;(b)16μA·cm-2;(c)32μA·cm-2;(d)160μA·cm-2
Fig.4  7A04铝合金在阴极恒电流极化作用下的SSRT曲线(a)及SCC敏感性比较(b)
Fig.5  阴极恒电流极化作用下7A04拉伸试样断口SEM形貌    (a)自然腐蚀状态;(b)-8μA·cm-2;(c)-15μA·cm-2;(d)-42μA·cm-2
Fig.6  7A04铝合金在空气、3.5%NaCl以及添加Ce3+介质中的SSRT曲线    (a)光滑试样;(b)缺口试样
Fig.7  7A04铝合金在不同溶液SSRT过程中的应力-时间与电化学噪声曲线    (a)3.5%NaCl;(b)8mmol/L CeCl3+3.5%NaCl
Fig.8  7A04铝合金裂纹萌生阶段的ECN统计分析    (a)形核速率;(b)噪声电阻;(c)平均积分电量;(d)平均峰幅值
Fig.9  7A04试样裂纹扩展过程中的ECN曲线    (a)3.5%NaCl;(b)8mmol/L CeCl3+3.5%NaCl;(1) 弹性变形阶段;(2) 塑性变形阶段
Fig.10  7A04拉伸试样的SEM形貌    (a)断口垂直方向;(b)截面方向;(1)3.5%NaCl;(2)8mmol/L CeCl3+3.5%NaCl
Fig.11  SSRT过程中7A04拉伸试样在不同溶液中的阻抗随时间变化曲线    (a)3.5%NaCl;(b)8mmol/L CeCl3+3.5%NaCl
Fig.12  SSRT过程中7A04铝合金在不同溶液中Rp与应力随时间的变化    (a)3.5%NaCl;(b)8mmol/L CeCl3+3.5%NaCl
1 王晨光, 陈跃良, 张勇, 等. 表面涂层破损对7B04铝合金点蚀的影响及仿真研究[J]. 航空材料学报, 2016, 36 (6): 48- 53.
doi: 10.11868/j.issn.1005-5053.2016.6.008
1 WANG C G , CHEN Y L , ZHANG Y , et al. Influence and simulation study of surface coating damage on pitting corrosion of 7B04 aluminum alloy[J]. Journal of Aeronautical Materials, 2016, 36 (6): 48- 53.
doi: 10.11868/j.issn.1005-5053.2016.6.008
2 QI W , SONG R , ZHANG Y , et al. Study on mechanical properties and hydrogen embrittlement susceptibility of 7075 aluminium alloy[J]. Corrosion Engineering, Science and Technology, 2015, 50 (6): 480- 486.
doi: 10.1179/1743278215Y.0000000004
3 刘继华, 李荻, 张佩芬. 氢对LC4高强铝合金应力腐蚀断裂的影响[J]. 中国腐蚀与防护学报, 2002, 22 (5): 308- 310.
3 LIU J H , LI D , ZHANG P F . Effect of hydrogen on stress corrosion cracking of LC4 aluminum alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2002, 22 (5): 308- 310.
4 SON R G , DIETZEL W , ZHANG B J , et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2004, 52 (16): 4727- 4743.
doi: 10.1016/j.actamat.2004.06.023
5 郑传波, 益帼, 高延敏. 高强铝合金应力腐蚀及氢渗透行为研究进展[J]. 腐蚀与防护, 2013, 34 (7): 600- 604.
5 ZHENG C B , YI G , GAO Y M . Research progress of stress corrosion cracking and hydrogen permeation behavior of high strength aluminum alloys[J]. Corrosion & Protection, 2013, 34 (7): 600- 604.
6 刘继华, 李荻, 朱国伟, 等. 7075铝合金应力腐蚀敏感性的SSRT和电化学测试研究[J]. 腐蚀与防护, 2005, 26 (1): 6- 9.
6 LIU J H , LI D , ZHU G W , et al. Stress corrosion susceptibility of 7075 aluminum alloy studied by SSRT and electrochemical tests[J]. Corrosion & Protection, 2005, 26 (1): 6- 9.
7 ROUT P K , GHOSH M M , GHOSH K S . Effect of solution pH on electrochemical and stress corrosion cracking behaviour of a 7150 Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering: A, 2014, 604, 156- 165.
doi: 10.1016/j.msea.2014.02.036
8 任广军, 赵春英. 铝合金应力腐蚀裂纹内的电化学行为[J]. 沈阳工业学院学报, 2002, 21 (2): 110- 113.
8 REN G J , ZHAO C Y . Electrochemical behavior in stress corrosion cracking of aluminum alloy[J]. Journal of Shenyang Institute of Technology, 2002, 21 (2): 110- 113.
9 陈小明, 宋仁国. 7000系铝合金应力腐蚀开裂的研究进展[J]. 腐蚀科学与防护技术, 2010, 22 (2): 120- 123.
9 CHEN X M , SONG R G . Progress in research on stress corrosion cracking of 7000 series aluminum alloys[J]. Corrosion Science and Protection Technology, 2010, 22 (2): 120- 123.
10 ILMAN M N . Chromate inhibition of environmentally assisted fatigue crack propagation of aluminium alloy AA 2024-T3 in 3.5%NaCl solution[J]. International Journal of Fatigue, 2014, 62, 228- 235.
doi: 10.1016/j.ijfatigue.2013.03.008
11 LIU X F , HUANG S J , GU H C . The effect of corrosion inhibiting pigments on environmentally assisted cracking of high strength aluminum alloy[J]. Corrosion Science, 2003, 45 (9): 1921- 1938.
doi: 10.1016/S0010-938X(03)00025-8
12 WARNER J S , GANGLOFF R P . Molybdate inhibition of corrosion fatigue crack propagation in precipitation hardened Al-Cu-Li[J]. Corrosion Science, 2012, 62, 11- 21.
doi: 10.1016/j.corsci.2012.03.038
13 于美, 马荣豹, 刘建华, 等. 硝酸铈封闭对2A12铝合金己二酸-硫酸阳极氧化膜耐蚀性的影响[J]. 材料工程, 2015, 43 (1): 24- 29.
doi: 10.11868/j.issn.1001-4381.2015.01.005
13 YU M , MA R B , LIU J H , et al. Effects of cerous nitrate sealing on corrosion resistance of adipic-sulfuric acid anodic oxide films on 2A12 aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (1): 24- 29.
doi: 10.11868/j.issn.1001-4381.2015.01.005
14 HINTON B R . Corrosion prevention and chromates: the end of an era?[J]. Metal Finishing, 1991, 89 (10): 15- 20.
15 MOUANGA M , ANDREATTA F , DRUART M E , et al. A localized approach to study the effect of cerium salts as cathodic inhibitor on iron/aluminum galvanic coupling[J]. Corrosion Science, 2015, 90, 491- 502.
doi: 10.1016/j.corsci.2014.03.026
16 PAUSSA L , ROSERO-NAVARRO N C , ANDREATTA F , et al. Inhibition effect of cerium in hybrid sol-gel films on aluminium alloy AA2024[J]. Surface and Interface Analysis, 2010, 42 (4): 299- 305.
doi: 10.1002/sia.3198
17 YASAKAU K A , TEDIM J O , MONTEMOR M F , et al. Mechanisms of localized corrosion inhibition of AA2024 by cerium molybdate nanowires[J]. Journal of Physical Chemistry C, 2013, 117 (11): 5811- 5823.
doi: 10.1021/jp3124633
18 阮红梅, 董泽华, 石维, 等. 基于电化学噪声研究缓蚀剂对AA6063铝合金点蚀的影响[J]. 物理化学学报, 2012, 28 (9): 2097- 2107.
18 RUAN H M , DONG Z H , SHI W , et al. Effect of inhibitors on pitting corrosion of AA6063 aluminum alloy based on electrochemical noise[J]. Acta Physico-Chimica Sinica, 2012, 28 (9): 2097- 2107.
19 DAVÓ B , CONDE A , De DAMBORENEA J J . Inhibition of stress corrosion cracking of alloy AA8090 T-8171 by addition of rare earth salts[J]. Corrosion Science, 2005, 47 (5): 1227- 1237.
doi: 10.1016/j.corsci.2004.07.028
20 ZHANG J , KALNAUS S , BEHROOZ M , et al. Effect of loading history on stress corrosion cracking of 7075-T651 aluminum alloy in saline aqueous environment[J]. Metallurgical and Materials Transactions A, 2011, 42 (2): 448- 460.
doi: 10.1007/s11661-010-0419-8
21 DONG Z H , GUO X P , ZHENG J X , et al. Investigation on inhibition of CrO42- and MoO42- ions on carbon steel pitting corrosion by electrochemical noise analysis[J]. Journal of Applied Electrochemistry, 2002, 32 (4): 395- 400.
doi: 10.1023/A:1016340421529
22 QI X , SONG R , QI W , et al. Effects of polarisation on mechanical properties and stress corrosion cracking susceptibility of 7050 aluminium alloy[J]. Corrosion Engineering, Science and Technology, 2014, 49 (7): 643- 650.
doi: 10.1179/1743278214Y.0000000162
23 HARUNA T , KOUNO T , FUJIMOTO S . Electrochemical conditions for environment-assisted cracking of 6061 Al alloy[J]. Corrosion Science, 2005, 47 (10): 2441- 2449.
doi: 10.1016/j.corsci.2004.10.011
24 祁星, 宋仁国, 王超, 等. 阴极极化对7050铝合金应力腐蚀行为的影响[J]. 中国有色金属学报, 2014, 24 (3): 631- 636.
24 QI X , SONG R G , WANG C , et al. Effects of cathodic polarization on stress corrosion behavior of 7050 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24 (3): 631- 636.
25 SABELKIN V , PEREL V Y , MISAK H E , et al. Investigation into crack initiation from corrosion pit in 7075-T6 under ambient laboratory and saltwater environments[J]. Engineering Fracture Mechanics, 2015, 134, 111- 123.
doi: 10.1016/j.engfracmech.2014.12.016
26 HOLROYD N J H , HARDIE D . Factors controlling crack velocity in 7000 series aluminium alloys during fatigue in an aggressive environment[J]. Corrosion Science, 1983, 23 (6): 527- 546.
doi: 10.1016/0010-938X(83)90117-8
27 DONG Z H , SHI W , GUO X P . Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution[J]. Corrosion Science, 2011, 53 (4): 1322- 1330.
doi: 10.1016/j.corsci.2010.12.028
28 ANITA T , PUJAR M G , SHAIKH H , et al. Assessment of stress corrosion crack initiation and propagation in AISI type 316 stainless steel by electrochemical noise technique[J]. Corrosion Science, 2006, 48 (9): 2689- 2710.
doi: 10.1016/j.corsci.2005.09.007
29 杨文忠, 田丰. 稀土金属缓蚀剂的研究进展[J]. 工业用水与废水, 2010, 41 (5): 1- 5.
29 YANG W Z , TIAN F . Research progress of rare earth metal corrosion inhibitor[J]. Industrial Water & Wastewater, 2010, 41 (5): 1- 5.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至. 锆微合金化增强铝合金的研究进展[J]. 材料工程, 2022, 50(8): 17-33.
[3] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[4] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[5] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[6] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[7] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[8] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[9] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[10] 张鹏举, 陈静青, 杨霄. 16MnR钢激光冲击工艺及对焊接结构应力腐蚀性能的影响[J]. 材料工程, 2022, 50(11): 145-154.
[11] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[12] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[13] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[14] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7××× 系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[15] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn