Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 7-12    DOI: 10.11868/j.issn.1001-4381.2016.000232
  锂离子电池专栏 本期目录 | 过刊浏览 | 高级检索 |
EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能
巩桂芬, 王磊, 兰健
哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040
Electrochemical Properties of EVOH-SO3Li/PET Lithium Ion Battery Separator via Electrospinning
GONG Gui-fen, WANG Lei, LAN Jian
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
全文: PDF(1936 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用聚对苯二甲酸乙二醇酯(PET)与乙烯-乙烯醇共聚物的磺化物(EVOH-SO3Li)进行交替静电纺丝,制备EVOH-SO3Li/PET复合锂离子电池隔膜,通过扫描电子显微镜对隔膜的微观形貌进行观察,并利用IM6型电化学工作站对隔膜的电化学性能进行分析测试。结果表明:EVOH-SO3Li/PET纤维膜的平均直径为387nm,两种纤维均呈现均匀的网状结构。相比纯EVOH-SO3Li纤维,改性后EVOH-SO3Li/PET复合纤维之间粘连现象明显降低,且纤维表面更加光滑,纤维间孔隙增大;组装的锂离子电池的电化学稳定窗口为5.3V,界面阻抗降至212.31Ω,离子电导率则提高至2.347×10-3S/cm,与EVOH-SO3Li隔膜相比各项性能均有所提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巩桂芬
巩桂芬
王磊
王磊
兰健
兰健
关键词 EVOH-SO3Li静电纺丝电化学性能锂离子电池隔膜聚对苯二甲酸乙二醇酯EVOH-SO3Li静电纺丝电化学性能    
Abstract:EVOH-SO3 Li/PET Li-ion battery composite membranes were prepared by means of alternated electrostatic spinning, then the morphology of the membranes was observed by scanning electron microscope, and the electrochemical properties of the membranes were tested by using an electrochemistry work station. The results show that the average diameter of EVOH-SO3 Li/PET fibre is 387nm, both two kinds of fibres exhibit uniform net-like structure. Compared with pure EVOH-SO3 Li fibre, adhesion phenomenon of modified EVOH-SO3 Li/PET fibre is not obvious anymore, and the surface of EVOH-SO3 Li/PET fibre becomes more smooth with enlarged pores between adjacent fibres; the electrochemical window of EVOH-SO3 Li/PET separator is 5.3V, bulk resistance of EVOH-SO3 Li/PET is decreased to 212.31Ω, and the ion conductivity of EVOH-SO3 Li/PET separator is 2.347×10-3 S/cm, the properties of EVOH-SO3 Li/PET membranes are improved compared with EVOH-SO3 Li.
Key wordslithium-ion battery separator    PET    EVOH-SO3Li    electrostatic spinning    electrochemical property    lithium-ion battery separator    PET    EVOH-SO3Li    electrostatic spinning    electrochemical property
收稿日期: 2016-03-02      出版日期: 2018-03-20
中图分类号:  TQ340.64  
基金资助: 
通讯作者: 巩桂芬(1966-),女,教授,硕士生导师,主要从事纳米纤维素改性和锂离子电池隔膜的研究,联系地址:黑龙江省哈尔滨市香坊区林园路4号(150040),E-mail:ggf-hust@163.com     E-mail: ggf-hust@163.com
引用本文:   
巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
GONG Gui-fen, WANG Lei, LAN Jian. Electrochemical Properties of EVOH-SO3Li/PET Lithium Ion Battery Separator via Electrospinning. Journal of Materials Engineering, 2018, 46(3): 7-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000232      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/7
[1] LI H, MA X T, SHI J L, et al. Preparation and properties of poly (ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2011, 56(6):2641-2647.
[2] JIANG W, LIU Z, KONG Q, et al. A high temperature operating nanofibrous polyimide separator in Li-ion battery[J]. Solid State Ionics, 2013, 232:44-48.
[3] 李晓菲. 纳米SiO2/PVdF-HFP与PP无纺布复合锂离子电池隔膜的制备及性能研究[D]. 苏州:苏州大学, 2014. LI X F. Preparation and characterization of SiO2/PVdF-HFP/PP non-woven composite membrane for lithium-ion battery[D]. Soochow:Soochow University, 2014.
[4] 徐金威. TiO2纳米管的嵌锂电化学性能及其掺杂改性研究[D]. 开封:河南大学, 2007. XU J W. Study on the electrochemical properties of lithium insertion into pure and doped TiO2 nanotubes[D]. Kaifeng:Henan University, 2007.
[5] AEMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451:652-657.
[6] 陈牧, 颜悦, 刘伟明, 等. 全固态薄膜锂电池研究进展和产业化展望[J]. 航空材料学报, 2014, 34(6):1-20. CHEN M, YAN Y, LIU M W, et al. Research advances and industrialization prospects of all-solid-state thin-film lithium battery[J]. Journal of Aeronautical Materials, 2014, 34(6):1-20.
[7] 马昊, 刘磊, 苏杰, 等. 锂离子电池Sn基负极材料研究进展[J]. 材料工程, 2017, 45(6):138-146. MA H, LIU L, SU J, et al. Research progress on tin-based anode materials for lithium ion batteries[J]. Journal of Materials Engineering, 2017, 45(6):138-146.
[8] 张传文, 严玉蓉, 区炜锋, 等. 静电纺丝法制备锂离子电池隔膜的研究进展[J]. 产业用纺织品, 2009(1):1-6. ZHANG C W, YAN Y R, QU W F, et al. Review on membrane in lithium-ion battery prepared by electrospinning[J]. Technical Textiles, 2009(1):1-6.
[9] 莫名月, 陈红雨. 锂离子电池隔膜的研究进展[J]. 电源技术, 2011(11):1438-1440. MO M Y, CHEN H Y. Research progress on separator materials for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2011(11):1438-1440.
[10] HUANG X S. Separator technologies for lithium-ion batteries[J]. Journal Solid State Electrochemistry, 2011, 15(4):649-662.
[11] 孙美玲, 唐浩林, 潘牧. 动力锂离子电池隔膜的研究进展[J]. 材料导报, 2011, 25(9):44-50. SUN M L, TANG H L, PAN M. A review on the separations of power li-ion batteries[J]. Materials Review, 2011, 25(9):44-50.
[12] 丁彬, 余建勇. 静电纺丝与纳米纤维[M]. 北京:中国纺织出版社, 2011. DING B, YU J Y. Electrospinning and nanofibers[M]. Beijing:China Textile and Apparel Press, 2011.
[13] 漆东岳, 刘延波, 马营, 等. PAN-PVDF复合增强静电纺锂离子电池隔膜[J]. 电源技术, 2014, 138(12):2231-2234. QI D Y, LIU Y B, MA Y, et al. Enhanced electrospun PAN-PVDF composite membrane for Li-ion battery[J]. Chinese Journal of Power Sources, 2014, 138(12):2231-2234.
[14] FANG J, WANG X G, LIN T. Functional applications of electrospun nanofibers[J]. Nanofibers-production, properties and functional applications, 2011, 53(15):2265-2286.
[15] ZHANG J J, LIU Z H, KONG Q S, et al. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator[J]. ACS Applied Materials & Interfaces, 2012, 5(1):128-134.
[16] HAO J, LEI G, LI Z, et al. A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery[J]. Journal of Membrane Science, 2013, 428:11-16.
[17] 李星纬. EVOH-SO3Li锂离子电池隔膜的研究[D]. 哈尔滨:哈尔滨理工大学, 2013. LI X W. Investigation on EVOH-SO3Li for lithium-ion battery separator[D]. Harbin:Harbin University of Science and Technology, 2013.
[18] WU D Z, HUANG S H, XU Z Q, et al. Polythylene terephthalate/poly (vinylidene fluoride) composite separator for Li-ion battery[J]. Journal of Physics D:Applied Physics, 2015, 48(28):285-305.
[1] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[2] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[3] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[4] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[5] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[6] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[7] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[8] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[9] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[10] 龚文正, 常保宁, 阮诗伦, 申长雨. 静电纺丝聚芳醚砜酮纤维膜穿刺强度研究[J]. 材料工程, 2019, 47(4): 32-38.
[11] 张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
[12] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[13] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[14] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
[15] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn