Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 118-124    DOI: 10.11868/j.issn.1001-4381.2016.000241
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
7050铝合金模锻件淬火过程析出动力学行为
吴书舟1,2, 易幼平1,2, 黄始全1,2
1. 中南大学 机电工程学院, 长沙 410083;
2. 中南大学 高性能复杂制造国家重点实验室, 长沙 410083
Behavior of Precipitation Kinetics of 7050 Aluminum Alloy Die Forgings in Quenching Processes
WU Shu-zhou1,2, YI You-ping1,2, HUANG Shi-quan1,2
1. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China;
2. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
全文: PDF(3573 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过分级淬火方法测定7050铝合金模锻件的TTP曲线。利用TEM分析、JMA方程探究第二相脱溶析出机理和强化机制。结果表明:合金TTP曲线的鼻尖温度为337℃,敏感区间为270~400℃,淬火敏感性高温 < 低温 < 中温,孕育期提前至0.7s;合金等温保温以Al3Zr粒子为形核脱溶,早期η相优先析出,晶界粗化程度随温度升高而降低;保温时间延长后,低温段晶内析出弥散针状S相,中高温段S相析出减少,η相聚集吞并长大,晶界粗化且连续,随温度升高η相数量减少尺寸增大;脱溶析出相的强化效果为GP区+η'相 > 针状S相 > 棒状η相。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴书舟
易幼平
黄始全
关键词 TTP曲线淬火敏感性析出机理强化相    
Abstract:The time-temperature-property (TTP) curves of 7050 aluminum alloy die forgings were determined by an interrupted quenching method. The second phase dissolving and precipitation mechanism and the strengthening mechanism were studied by TEM and JMA equation.The results show that the nose temperature and incubation period of TTP curves are 337℃ and 0.7s, with the quenching sensitivity range 270-400℃. Low level of the quenching sensitivity to sort the result followed by high temperature, low temperature, medium temperature; Al3Zr particles are the primary nuclear sites of supersaturated solid solution, whose main precipitate phases are η particles during early isothermal process, with the increase of temperature, the grain boundary becomes narrower; after the holding time is prolonged, needle dispersion S phases are the main precipitates of the alloy in the low temperature range; in the medium and high temperature range, a large number of η particles precipitate and aggregate, accompanied by the decrease of volume fraction of S phases, meanwhile the grain boundary becomes coarser and continuous; with the temperature rising, the size of η particles increases while the amount decreases; the rank of strength levels of precipitation is GP zones and η' phases, needle-like S phases, clubbed η phases.
Key wordsTTP curve    quenching sensitivity    precipitation mechanism    strengthening phase
收稿日期: 2016-03-02      出版日期: 2018-11-19
中图分类号:  TG146.2+1  
基金资助: 
通讯作者: 黄始全(1982-),男,博士,副教授,主要从事航空航天锻件研究,联系地址:湖南省长沙市岳麓区中南大学新校区机电院B426(410083),E-mail:huangsqcsu@sina.com     E-mail: huangsqcsu@sina.com
引用本文:   
吴书舟, 易幼平, 黄始全. 7050铝合金模锻件淬火过程析出动力学行为[J]. 材料工程, 2018, 46(11): 118-124.
WU Shu-zhou, YI You-ping, HUANG Shi-quan. Behavior of Precipitation Kinetics of 7050 Aluminum Alloy Die Forgings in Quenching Processes. Journal of Materials Engineering, 2018, 46(11): 118-124.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000241      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/118
[1] 唐见茂.航空航天材料发展现状及前景[J].航天器环境工程,2013,30(2):115-121. TANG J M.A review of aerospace materials[J].Spacecraft Environment Engineering,2013,30(2):115-121.
[2] 易幼平,杨积慧,蔺永诚.7050铝合金热压缩变形的流变应力本构方程[J].材料工程,2007(4):20-22. YI Y P,YANG J H,LIN Y C. Flow stress constitutive equation of 7050 aluminum alloy during hot compression[J].Journal of Materials Engineering,2007(4):20-22.
[3] 刘昌斌,夏长清,戴晓元.高强高韧铝合金的研究现状及发展趋势[J].矿冶工程,2003,23(5):74-78. LIU C B,XIA C Q,DAI X Y.Present states of research and developing trends of high strength and high toughness aluminum alloy[J].Mining and Metallurgical Engineering,2003,23(5):74-78.
[4] 刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010,20(9):1705-1715. LIU B,PENG C Q,WANG R C,et al. Recent development and prospects for giant plane aluminum alloys[J].The Chinese Journal of Nonferrous Metals,2010,20(9):1705-1715.
[5] DUMONT D,DESCHAMPS A,BRECHET C.Characterization of precipitation microstructures in aluminium alloys 7040 and 7050 and their relationship to mechanical behavior[J]. Materials Science and Technology,2004,20(5):567-576.
[6] DESCHAMPS A,BRECHET Y. Nature and distribution of quench-induced precipitation in an Al-Zn-Mg-Cu alloy[J].Scripta Materialia,1998,39(11):1517-1522.
[7] 王晓,史亦韦,梁菁,等. 声弹性法测量铝合金预拉伸板中的应力[J].材料工程,2015,43(12):95-100. WANG X,SHI Y W,LIANG J,et al. Stress in pre-stretched aluminum alloy plate by acoustic elasticity[J]. Journal of Materials Engineering,2015,43(12):95-100.
[8] DAVYDOV V G,BER L B, ANANIEV V N. Phase transformations and heat treatment regimes of commercial aluminum alloys[J]. Materials Science Forum,1996,217/222:859-864.
[9] 张新明,刘文军,刘胜胆,等.7050铝合金的TTP曲线[J].中国有色金属学报,2009,19(5):861-868. ZHANG X M,LIU W J,LIU S D,et al.TTP curve of aluminum alloy 7050[J].The Chinese Journal of Nonferrous Metals,2009,19(5):861-868.
[10] 李培跃,熊柏青,张永安,等.7050铝合金淬火特性与微观组织[J].中国有色金属学报,2011,21(3):513-521. LI P Y,XIONG B Q,ZHANG Y A,et al.Hardenability characteristic and microstructure of 7050 Al alloy[J].The Chinese Journal of Nonferrous Metals,2011,21(3):513-521.
[11] 刘文军.Al-Zn-Mg-Cu铝合金淬火析出行为及淬火敏感性研究[D].长沙:中南大学,2011:92-111. LIU W J.The research about the quench induced precipitation and quenching sensitivity of Al-Zn-Mg-Cu alloys[D]. Changsha:Central South University,2011:92-111.
[12] TANG J G,CHEN H,ZHANG X M,et al. Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy[J]. Transactions of Nonferrous Metals Society of China,2012,22(6):1255-1263.
[13] FRIDLYANDER J N,KOLOBNEV N I,KHOKHLATOVA L B,et al. Peculiarities of structural formation in 1420 alloy steels[J]. Aluminum,1992,68(4):334-336.
[14] STALEY J T.Quench factor analysis of aluminum alloys[J].Materials Science and Technology,1987,3(11):923-935.
[15] ROBINSON J S,CUDD R L,TANNER D A,et al. Quench sensitivity and tensile property in homogeneity in 7010 forgings[J]. Journal of Materials Processing Technology,2001,119(1/3):261-267.
[16] EVANCHO J W,STALEY J T.Kinetics of precipitation in aluminum alloys during continuous cooling[J].Metallurgical and Materials Transactions A,1974,5:43-47.
[17] GODARD D, ARCHAMBAULT P, AEBY-GAUTIER E,et al. Precipitation sequences during quenching of the AA 7010 alloy[J].Acta Materialia,2002,50(9):2319-2329.
[18] 陈冷,余永宁.金属和合金中的相变[M].北京:高等教育出版社, 2011:233-235. CHEN L,YU Y N. Phase transformations in metals and alloys[M]. Beijing:Higher Education Press,2011:233-235.
[1] 李卫, 陈康华, 焦慧彬, 周亮, 杨振, 陈送义. 微量Ge对7056铝合金组织和淬火敏感性的影响[J]. 材料工程, 2019, 47(3): 123-130.
[2] 张新明, 余翠娟, 刘胜胆, 刘星兴, 张盼, 王莹莹. Fe和Si杂质对Al-Zn-Mg-Cu合金淬火敏感性的影响[J]. 材料工程, 2013, 0(10): 41-47.
[3] 李杰, 孙枫, 李春志, 郭峰, 李志, 颜鸣皋. 高Co-Ni超高强度钢强化析出相的微观分析[J]. 材料工程, 2009, 0(7): 1-4.
[4] 刘富荣, 高谦, 高登攀, 王广生. 激光熔覆WC增强复合涂层开裂行为分析[J]. 材料工程, 2003, 0(5): 37-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn