Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (7): 7-12    DOI: 10.11868/j.issn.1001-4381.2016.000248
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
2A66铝锂合金板材各向异性研究
张显峰1,2,*(), 陆政1,2, 高文理3, 曹亚雷3, 冯朝辉1
1 北京航空材料研究院, 北京 100095
2 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095
3 湖南大学 材料科学与工程学院, 长沙 410082
Anisotropy of 2A66 Al-Li Alloy Sheet
Xian-feng ZHANG1,2,*(), Zheng LU1,2, Wen-li GAO3, Ya-lei CAO3, Zhao-hui FENG1
1 Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
3 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
全文: PDF(2954 KB)   HTML ( 14 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用布氏硬度与拉伸性能测试以及OM,SEM和TEM分析,研究2A66铝锂合金板材力学性能的各向异性随时效时间变化的规律和合金时效状态下的显微组织,并探讨影响各向异性的主要因素。结果表明:165℃峰值时效前,随时效时间的延长,2A66铝锂合金力学性能的各向异性程度逐渐下降,过时效后合金的各向异性有所增强,伸长率的各向异性大于强度各向异性。峰时效(64h)时合金的σbσ0.2δ的IPA值均达到了最低值,分别为3.0%,3.0%,12.2%,此时合金也获得了较好的强塑性结合,轴向σbσ0.2δ分别为526.5,448.9MPa,10.1%。不同热处理状态下,2A66铝锂合金平面各向异性的总体表现为:纵向(0°)和横向(90°)的强度最高,45°方向最低;45°方向试样的伸长率最高,纵向和横向最低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张显峰
陆政
高文理
曹亚雷
冯朝辉
关键词 2A66铝锂合金力学性能各向异性时效显微组织    
Abstract

The anisotropy and microstructures during aging treatment for 2A66 Al-Li alloy were studied by Brinell hardness, tensile testing, optical microscope(OM), scanning electron microscope(SEM) and transmission electron microscope (TEM). The main factors which influence the anisotropy of mechanical properties were discussed. The results indicate that, before 165℃ peak-aged, the anisotropy of the mechanical properties of the 2A66 Al-Li alloy decreases gradually with the extension of aging time. When the alloy is over-aged, the anisotropy of the alloy increases; the anisotropy of ductility is more serious than that of strength. The IPA values of σb, σ0.2 and δ of the alloy reach the lowest value at 3.0%, 3.0% and 12.2% respectively at the time of peak aging (64h), and the alloy is also obtained with good plasticity and axial tensile properties. σb, σ0.2 and δ of the alloy are 526.5, 448.9MPa, 10.1% respectively. Under different heat treatment conditions, the general behavior of the anisotropy of 2A66 Al-Li alloy is as follows: longitudinal (0°) and transverse (90°) have the highest strength, 45° direction is the lowest strength; 45° direction specimen has the highest elongation, vertical and horizontal direction has the minimum elongation.

Key words2A66 Al-Li alloy    mechanical property    anisotropy    aging treatment    microstructure
收稿日期: 2016-03-07      出版日期: 2017-07-21
中图分类号:  TG146.2  
基金资助:国家自然科学基金资助项目(51271076);国家自然科学基金资助项目(51474101);长沙市科技计划项目(k1403033-11)
通讯作者: 张显峰     E-mail: zhangxf0476@sohu.com
作者简介: 张显峰(1979-), 男, 硕士, 高级工程师, 从事高强铝合金方面的研究, 联系地址:北京市81信箱2分箱(100095), E-mail:zhangxf0476@sohu.com
引用本文:   
张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
Xian-feng ZHANG, Zheng LU, Wen-li GAO, Ya-lei CAO, Zhao-hui FENG. Anisotropy of 2A66 Al-Li Alloy Sheet. Journal of Materials Engineering, 2017, 45(7): 7-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000248      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/7
Fig.1  2A66铝锂合金165℃时效硬化曲线
Orientation angle/(°)Mechanical property
Aging 12h Aging 40h Aging 64h Aging 80h
σb/MPa σ0.2/MPa δ/% σb/MPa σ0.2/MPa δ/% σb/MPa σ0.2/MPa δ/% σb/MPa σ0.2/MPa δ/%
0 475.7 313.7 17.2 502.8 344.7 13.7 526.5 448.9 10.1 509.2 397.4 9.3
30 457.3 299.2 20.2 490.2 333.1 14.4 513.8 438.0 11.4 494.4 384.3 10.2
45 446.5 298.0 22.9 481.5 337.3 14.9 501.8 424.6 12.5 487.3 379.1 11.5
60 450.2 303.4 20.8 479.1 327.5 16.5 503.4 434.6 11.8 485.0 379.2 10.8
90 465.1 298.8 17.5 497.6 335.6 13.8 523.6 443.8 10.6 500.7 386.8 9.5
IPA/% 4.4 4.4 17.4 3.1 3.3 13.9 3.0 3.0 12.2 3.4 3.8 13.5
Table 1  拉伸试样的力学性能
Fig.2  合金的力学性能随取样方向和时效时间的变化曲线(a)抗拉强度;(b)屈服强度;(c)伸长率
Fig.3  165℃/64h时效状态下2A66铝锂合金拉伸断口形貌(a)纵向;(b)45°方向;(c)横向
Fig.4  2A66铝锂合金165℃/64h时效态的显微组织(a)轧制面;(b)横截面;(c)纵截面
Fig.5  2A66铝锂合金165℃时效状态下的TEM图
(a)165℃/12h,B=[100]Al;(b)165℃/12h,B=[110]Al;(c)165℃/40h,B=[100]Al;(d)165℃/40h,B=[110]Al;(e)165℃/64h,B=[100]Al;(f)165℃/64h,B=[110]Al
1 程晓宇, 王晓梅. 铝锂合金研究与发展[J]. 中国有色金属, 2008, (12): 72- 73.
1 CHENG X Y , WANG X M . Research and development of aluminum lithium alloys[J]. China Journal of Nonferrous Metals, 2008, (12): 72- 73.
2 霍红庆, 郝维新, 耿桂宏, 等. 航天轻型结构材料——铝锂合金的发展[J]. 真空与低温, 2005, 11 (2): 63- 69.
2 HUO H Q , HAO W X , GENG G H , et al. Development of the new aerocraft material-aluminum-lithium alloy[J]. Vacuum and Cryogenics, 2005, 11 (2): 63- 69.
3 黄兰萍, 郑子樵, 黄永平. 2197铝-锂合金的组织和性能[J]. 中国有色金属学报, 2004, 14 (12): 2066- 2072.
doi: 10.3321/j.issn:1004-0609.2004.12.015
3 HUANG L P , ZHENG Z Q , HUANG Y P . Microstructure and properties of 2197 Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (12): 2066- 2072.
doi: 10.3321/j.issn:1004-0609.2004.12.015
4 AHMADI S , ARABI H , SHOKUHFAR A . Effects of multiple strengthening treatments on mechanical properties and stability of nanoscale precipitated phases in an aluminum-copper-lithium alloy[J]. Journal of Materials Science & Technology, 2010, 26 (12): 1078- 1082.
5 翟彩华, 冯朝辉, 柴丽华, 等. 铝锂合金的发展及一种新型铝锂合金-X2A66[J]. 材料科学与工程学报, 2015, 33 (2): 302- 306.
5 ZHAI C H , FENG Z H , CHAI L H , et al. Development of Al-Li alloy and a new type of Al-Li alloy X2A66[J]. Journal of Materials Science and Engineering, 2015, 33 (2): 302- 306.
6 刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20 (9): 1705- 1715.
6 LIU B , PENG C Q , WANG R C , et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20 (9): 1705- 1715.
7 JATA K V , HOPKINS A K , RIOJA R J . The anisotropy and texture of Al-Li alloys[J]. Materials Science Forum, 1996, 217, 647- 652.
8 孟亮, 郑修麟. 铝锂合金力学性能的各向异性[J]. 有色金属, 1996, 48 (4): 82- 88.
8 MENG L , ZHENG X L . Anisotropy of mechanical properties for aluminum-lithium alloys[J]. Nonferrous Metals, 1996, 48 (4): 82- 88.
9 魏齐龙, 陈铮. 1420铝锂合金的各向异性[J]. 中国有色金属学报, 2002, 12 (3): 573- 577.
9 WEI Q L , CHEN Z . Anisotropy of 1420 Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals, 2002, 12 (3): 573- 577.
10 魏齐龙, 陈铮, 王永欣. T1相(Al2CuLi)对铝锂合金各向异性的贡献[J]. 有色金属, 2002, 54 (3): 4- 8.
10 WEI Q L , CHEN Z , WANG Y X . Contribution of T1 precipitate (Al2CuLi) to anisotropy in Al-Li alloys[J]. Nonferrous Metals, 2002, 54 (3): 4- 8.
11 李红英, 欧玲, 郑子樵. 2195铝锂合金的各向异性研究[J]. 材料工程, 2005, (10): 31- 34.
doi: 10.3969/j.issn.1001-4381.2005.10.008
11 LI H Y , OU L , ZHENG Z Q . Research on anisotropy of 2195 Al-Li alloy[J]. Journal of Materials Engineering, 2005, (10): 31- 34.
doi: 10.3969/j.issn.1001-4381.2005.10.008
12 RIOJA R J . Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications[J]. Materials Science and Engineering: A, 1998, 257 (1): 100- 107.
doi: 10.1016/S0921-5093(98)00827-2
13 CHO K K , CHUNG Y H , LEE C W , et al. Effects of grain shape and texture on the yield strength anisotropy of Al-Li alloy sheet[J]. Scripta Materialia, 1999, 40 (6): 651- 657.
doi: 10.1016/S1359-6462(98)00481-3
14 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2008.
14 HU R Z , SHI Q Z . Thermal Analysis Kinetics[M]. Beijing: Science Press, 2008.
15 LI H Y , TANG Y , ZENG Z D , et al. Effect of ageing time on strength and microstructures of an Al-Cu-Li-Zn-Mg-Mn-Zr alloy[J]. Materials Science and Engineering: A, 2008, 498 (1-2): 314- 320.
doi: 10.1016/j.msea.2008.08.001
16 MAURICE C , DRIVER J H . High temperature plane strain compression of cube oriented aluminium crystals[J]. Acta Metallurgica et Materialia, 1993, 41 (6): 1653- 1664.
doi: 10.1016/0956-7151(93)90185-U
17 HUANG J C , ARDELL A J . Strengthening mechanisms associated with T1 particles in two Al-Li-Cu alloys[J]. Le Journal De Physique Colloques, 1987, 48 (C3): 373- 383.
18 杨进. Al-Mg-Mn-Sc-Zr合金板材平面力学各向异性研究[D]. 长沙: 中南大学, 2005.
18 YANG J. Research on plane mechanical anisotropy of Al-Mg-Mn-Sc-Zr alloy sheet[D]. Changsha: Central South University, 2005.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 赵云松, 杨昭, 陈瑞志, 张剑, 骆宇时, 刘丽荣. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127-136.
[4] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[5] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[6] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[7] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[8] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[9] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[10] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[11] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[12] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[13] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[14] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[15] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn