Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (6): 65-72    DOI: 10.11868/j.issn.1001-4381.2016.000260
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
弥散相对3003铝合金再结晶晶粒尺寸的影响
黄元春1,2, 许天成1, 肖政兵2, 任贤魏1, 贾广泽1
1. 中南大学 轻合金研究院, 长沙 410083;
2. 中南大学 机电工程学院, 长沙 410083
Effect of Dispersed Precipitates on Recrystallized Grain Size of 3003 Aluminum Alloy
HUANG Yuan-chun1,2, XU Tian-cheng1, XIAO Zheng-bing2, REN Xian-wei1, JIA Guang-ze1
1. Light Alloy Research Institute, Central South University, Changsha 410083, China;
2. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
全文: PDF(8305 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对3003铝合金冷轧板再结晶退火时出现的晶粒粗大问题,通过光学显微镜、扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)、透射电镜(TEM)等方法,研究均匀化退火和中间退火过程中形成的弥散相的种类、尺寸和分布情况对3003铝合金再结晶晶粒尺寸的影响机理。结果表明:3003铝合金铸轧板的再结晶开始温度约为540℃;均匀化退火过程中形成的预析出的粗大弥散相对再结晶有促进作用,而细小弥散相对再结晶有抑制作用;中间退火过程中析出的弥散相对再结晶的抑制作用微弱;500℃中间退火200s后,板材基体内没有弥散相析出,此时再结晶优于弥散相析出率先发生;500℃中间退火2h后,板材基体内会析出大量细小的AlMnSi相;3003铝合金的最佳均匀化退火温度区间为560~580℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄元春
许天成
肖政兵
任贤魏
贾广泽
关键词 3003铝合金弥散相再结晶均匀化退火中间退火    
Abstract:Regarding the grain coarsening issue of 3003 aluminum alloy cold rolled plate during recrystallization annealing,optical microscopy,scanning electron microscopy(SEM), energy spectrum analysis,X-ray diffraction and transmission electron microscopy were used to investigate the mechanism for the effect of dispersed precipitates, including their kinds, size and distribution on the recrystallization grain size,which were formed during homogenization annealing and intermediate annealing. The results indicate that the recrystallization starting temperature of 3003 aluminum alloy cast-rolling plate is 540℃;the coarse dispersed phases that formed during the homogenization annealing process facilitate the recrystallization, while the fine ones restrain the recrystallization; the fine dispersed phases that formed during the intermediate annealing have a weak effect on the recrystallization;there is no dispersed phases in the plate after intermediate annealing at 500℃ for 200s; at this time, recrystallization occurs prior to the precipitate of dispersed phase;there are many fine AlMnSi phase precipitates in the plate after intermediate annealing at 500℃ for 2h; the optimum homogenization annealing temperature range of 3003 aluminum alloy is between 560℃ and 580℃.
Key words3003 aluminum alloy    dispersed phase    recrystallization    homogenization annealing    intermediate annealing
收稿日期: 2016-03-08      出版日期: 2018-06-14
中图分类号:  TG146.2+1  
通讯作者: 黄元春(1966-),男,博士,教授,研究方向:铝及铝合金加工及基础研究,联系地址:湖南省长沙市岳麓区麓山南路932号中南大学轻合金研究院217室(410083),E-mail:science@csu.edu.cn     E-mail: science@csu.edu.cn
引用本文:   
黄元春, 许天成, 肖政兵, 任贤魏, 贾广泽. 弥散相对3003铝合金再结晶晶粒尺寸的影响[J]. 材料工程, 2018, 46(6): 65-72.
HUANG Yuan-chun, XU Tian-cheng, XIAO Zheng-bing, REN Xian-wei, JIA Guang-ze. Effect of Dispersed Precipitates on Recrystallized Grain Size of 3003 Aluminum Alloy. Journal of Materials Engineering, 2018, 46(6): 65-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000260      或      http://jme.biam.ac.cn/CN/Y2018/V46/I6/65
[1] 李滔, 周海涛, 王顺成, 等.液固铸造4343/3003/4343铝合金复合锭的界面组织[J]. 材料工程, 2016,44(1):19-25. LI T, ZHOU H T, WANG S C, et al. Interface microstructure of 4343/3003/4343 aluminum alloy clad ingot prepared by liquid-solid casting[J]. Journal of Materials Engineering, 2016,44(1):19-25.
[2] 刘建文, 涂益友, 蒋建清. AA3003合金铸轧板预析出相对再结晶温度、组织的影响[J]. 特种铸造及有色合金, 2010, 30(1):67-70. LIU J W, TU Y Y, JIANG J Q. Influence of pre-precipitation on recrystallization structure and recrystallization temperature in AA3003 twin roll cast aluminum strips[J]. Special Casting & Nonferrous Alloys, 2010, 30(1):67-70.
[3] HUANG K, LI Y J, MARTHINSEN K. Effect of heterogeneously distributed pre-existing dispersoids on the recrystallization behavior of a cold-rolled Al-Mn-Fe-Si alloy[J]. Materials Characterization, 2015, 102:92-97.
[4] WANG N, FLATØY J E, LI Y J, et al. Evolution in microstructure and mechanical properties during back-annealing of AlMnFeSi alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8):1878-1883.
[5] 张茁, 陈康华, 刘红卫. 高温预析出对Al-Zn-Mg-Cu铝合金显微组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2003, 8(4):351-357. ZHANG Z, CHEN K H, LIU H W. Effect of high temperature pre-precipitation on microstructure and mechanical property of Al-Zn-Mg-Cu aluminum alloys[J]. Powder Metallurgy Materials Science and Engineering, 2003, 8(4):351-357.
[6] BIROL Y. Recrystallization of a supersaturated Al-Mn alloy[J]. Scripta Materialia, 2008, 59(6):611-614.
[7] BIROL Y. Response to annealing treatment of a twin-roll cast thin AlFeMnSi strip[J]. Journal of Materials Processing Technology, 2009, 209(1):506-510.
[8] BIROL Y. Impact of homogenization on recrystallization of a supersaturated Al-Mn alloy[J].Scripta Materialia,2009,60(1):5-8.
[9] LIU W C, RADHAKRISHNAN B. Recrystallization behavior of a supersaturated Al-Mn alloy[J]. Materials Letters, 2010, 64(16):1829-1832.
[10] 李学朝. 铝合金材料组织与金相图谱[M]. 北京:冶金工业出版社, 2010. LI X C. Aluminum alloy material organization and metallographic map[M]. Beijing:Metallurgical Industry Press, 2010.
[11] 郑子樵. 材料科学基础[M]. 长沙:中南大学出版社, 2005. ZHENG Z Q. Foundations of materials science[M]. Changsha:Central South University Press, 2005.
[12] 舒冠华, 李新梅, 王攀. 锰对扩散退火后热浸镀Al-Mn镀层抗磨粒磨损性能的影响[J]. 材料工程, 2015,43(11):77-83. SHU G H, LI X M, WANG P. Effect of manganese on anti-abrasion performance of Al-Mn coating prepared by hot-dip-aluminizing and diffusion annealing[J]. Journal of Materials Engineering, 2015,43(11):77-83.
[13] HUANG H W, OU B L. Evolution of precipitation during different homogenization treatments in a 3003 aluminum alloy[J]. Materials & Design, 2009, 30(7):2685-2692.
[14] LI Y J, ARNBERG L. Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization[J]. Materials Science and Engineering:A, 2003, 347(1/2):130-135.
[15] LI Y J, MUGGERUD A M F, OLSEN A, et al. Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy[J]. Acta Materialia, 2012, 60(3):1004-1014.
[16] DEHMAS M, AEBY-GAUTIER E, ARCHAMBAULT P, et al. Interaction between eutectic intermetallic particles and dispersoids in the 3003 aluminum alloy during homogenization treatments[J]. Metallurgical and Materials Transactions A, 2013, 44(2):1059-1073.
[17] SHANMUGANATAN S P, SENTHIL KUMAR V S. Experimental investigation and finite element modeling on profile forming of conical component using Al 3003(O) alloy[J]. Materials & Design, 2012, 36:564-569.
[18] 何正林, 高文理, 陆政,等.热处理对7A85铝合金组织和性能的影响[J]. 材料工程, 2015,43(8):13-18. HE Z L,GAO W L,LU Z,et al. Effects of heat treatment on microstructure and properties of 7A85 aluminium alloy[J]. Journal of Materials Engineering, 2015,43(8):13-18.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[3] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[4] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[5] 储双杰, 沈侃毅, 沙玉辉, 陈曦. 无取向硅钢形变储能取向依赖性及其对再结晶织构的影响[J]. 材料工程, 2019, 47(8): 147-153.
[6] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[7] 史振学, 刘世忠, 赵金乾, 王效光, 李嘉荣. 基于不同原始组织预设变形第四代单晶高温合金的再结晶行为[J]. 材料工程, 2019, 47(5): 107-114.
[8] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[9] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[10] 侯琼, 陶宇, 贾建. 第四代粉末高温合金热变形后的“项链”组织[J]. 材料工程, 2019, 47(3): 94-100.
[11] 丁宁, 金士杰, 彭良明, 雷明凯, 林莉. Al0.26CoCrFeNiMn高熵合金再结晶组织演变超声表征[J]. 材料工程, 2019, 47(12): 71-77.
[12] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
[13] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[14] 石晶晶, 叶朋, 崔凯旋, 汪炳叔, 邓丽萍, 王晨, 李强. 孪晶诱发的AZ31镁合金静态再结晶行为[J]. 材料工程, 2018, 46(11): 134-140.
[15] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn