Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 58-64    DOI: 10.11868/j.issn.1001-4381.2016.000294
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
槽电压对纯铁表面液相等离子体电解硼碳氮三元共渗层摩擦磨损性能的影响
金小越1,2, 吴杰1,2, 杨璇1,2, 王彬3, 陈琳1,2, 曲尧1,2, 薛文斌1,2
1. 北京师范大学 核科学与技术学院 射线束技术与材料改性教育部重点实验室, 北京100875;
2. 北京市辐射中心, 北京 100875;
3. 山西农业大学 文理学院, 山西 太谷 030801
Influence of Bath Voltages on Wear Performance of Plasma Electrolytic Borocarbonitriding Layer on Pure Iron
JIN Xiao-yue1,2, WU Jie1,2, YANG Xuan1,2, WANG Bin3, CHEN Lin1,2, QU Yao1,2, XUE Wen-bin1,2
1. Key Laboratory for Beam Technology and Materials Modification (Ministry of Education), College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2. Beijing Radiation Center, Beijing 100875, China;
3. College of Arts and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
全文: PDF(4920 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用液相等离子体电解渗技术分别在340,360V和380V槽电压下对纯铁进行硼碳氮三元共渗(PEB/C/N)表面处理。分析纯铁表面PEB/C/N共渗层的形貌、成分、相组成和显微硬度分布。采用球-盘摩擦磨损仪评估槽电压对渗层摩擦磨损性能的影响,并分析渗层与ZrO2球对磨时磨损机理。纯铁表面的PEB/C/N三元共渗层厚度随着放电电压升高而增大,最高硬度也相应增加。380V处理1h后硼碳氮三元共渗层中渗硼层和过渡层厚度分别达到26μm和34μm,渗层最高硬度可以达到2318HV。硼碳氮三元共渗层的磨损率仅为纯铁基体的1/10。硼碳氮共渗处理大幅度降低纯铁的摩擦因数和磨损率,但不同槽电压下制备的PEB/C/N共渗层的摩擦因数和磨损率变化较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金小越
吴杰
杨璇
王彬
陈琳
曲尧
薛文斌
关键词 液相等离子体电解渗硼碳氮共渗摩擦磨损纯铁    
Abstract:Plasma electrolytic borocarbonitriding (PEB/C/N) was successfully used to achieve ternary borocarbonitriding layer on industrial pure iron at the bath voltages of 340, 360V and 380V respectively. The morphology, composition, phase constituents and microhardness profiles of PEB/C/N layers were investigated. The influence of bath voltages on wear behaviors of PEB/C/N layers was evaluated by ball-disc friction and wear tester under dry sliding against ZrO2 ball, and their wear mechanism were analyzed. The results show that the thickness and maximum hardness of PEB/C/N layer on pure iron increase with the increase of bath voltage. After 1h discharge treatment at 380V, the boride layer and transition layer of the PEB/C/N sample reach 26μm and 34μm respectively, and the maximum microhardness of PEB/C/N layer can reach 2318HV. The wear rate of PEB/C/N layer is only 1/10 of that of the pure iron substrate. The friction coefficient and wear rate of pure iron are greatly reduced after the PEB/C/N surface treatment, but the friction coefficient and wear rate of PEB/C/N layer vary little under different bath voltages.
Key wordsplasma electrolytic saturation    borocarbonitriding    friction and wear    pure iron
收稿日期: 2016-03-13      出版日期: 2017-04-17
中图分类号:  TG156.8  
通讯作者: 薛文斌(1968-),男,教授,博士,主要从事材料表面改性研究,联系地址:北京师范大学核科学与技术学院(100875),E-mail:xuewb@bnu.edu.cn     E-mail: xuewb@bnu.edu.cn
引用本文:   
金小越, 吴杰, 杨璇, 王彬, 陈琳, 曲尧, 薛文斌. 槽电压对纯铁表面液相等离子体电解硼碳氮三元共渗层摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 58-64.
JIN Xiao-yue, WU Jie, YANG Xuan, WANG Bin, CHEN Lin, QU Yao, XUE Wen-bin. Influence of Bath Voltages on Wear Performance of Plasma Electrolytic Borocarbonitriding Layer on Pure Iron. Journal of Materials Engineering, 2017, 45(4): 58-64.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000294      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/58
[1] SHEN D J, WANG Y L, NASH P, et al. A novel method of surface modification for steel by plasma electrolysis carbonitriding[J]. Materials Science & Engineering: A, 2007, 458(4): 240-243.
[2] VENKATARAMAN B, SUNDARARAJAN G. The high speed sliding wear behaviour of boronized medium carbon steel[J]. Surface & Coatings Technology, 1995,73(3): 177-184.
[3] 衣晓红,李凤华,樊战国. Q235钢固体粉末渗硼及渗层生长动力学行为[J]. 材料保护,2009, 42(4): 13-16. YI X H, LI F H, FAN Z G. Technology for solid-state pack boronizing of Q235 steel and kinetic study of boron diffusion in steel [J]. Materials Protection, 2009, 42(4):13-16.
[4] 袁晓波,杨瑞成,陈华,等. 固体渗硼最佳工艺技术及其发展趋势[J]. 中国表面工程,2003, 5(6): 5-10. YUAN X B, YANG R C, CHEN H, et al. The optimum technologies and prospects of solid boriding [J]. China Surface Engineering, 2003, 5(6): 5-10.
[5] 薛文斌,金乾,刘润,等. 甘油浓度对不锈钢表面液相等离子体电解渗透过程的影响[J].中国有色金属学报,2013, 23(3):882-887. XUE W B, JIN Q, LIU R, et al. Influence of glycerin concentration on plasma electrolytic saturation process of stainless steel surface[J].The Chinese Journal of Nonferrous Metals, 2013, 23(3): 882-887.
[6] XUE W, JIN Q, LIU R, et al. Plasma electrolytic carburizing process on stainless steel in glycerin aqueous solution[J]. Transaction of Materials Heat Treatment, 2012, 33(4): 108-111.
[7] WU J, XUE W, WANG B, et al. Characterization of carburized layer on T8 steel fabricated by cathodic plasma electrolysis[J]. Surface & Coatings Technology, 2014, 245(5): 9-15.
[8] NIE X, WANG L, YAO Z C, et al. Sliding wear behaviour of electrolytic plasma nitrided cast iron and steel[J]. Surface & Coatings Technology, 2005, 200(5): 1745-1750.
[9] NIE X, TSOTSOS C, WILSON A, et al. Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels[J]. Surface & Coatings Technology, 2001,139(Suppl 2-3): 135-142.
[10] TAHERI P, DEHGHANIAN C. Wear and corrosion properties of nanocrystalline coatings on stainless steel produced by plasma electrolytic nitrocarburizing[J]. International Journal of Materials Research, 2008, 99(1): 92-100.
[11] BEJAR M A, HENRIQUEZ R. Surface hardening of steel by plasma-electrolysis boronizing[J]. Materials & Design, 2009, 30: 1726-1728.
[12] LIU R, WANG B, WU J, et al. Spectroscopic investigation of plasma electrolytic borocarburizing on Q235 low-carbon steel[J]. Applied Surface Science, 2014, 321(5): 348-352.
[13] WANG B, JIN X, XUE W, et al. High temperature tribological behaviors of plasma electrolytic borocarburized Q235 low-carbon steel[J]. Surface & Coatings Technology, 2013, 232 (8): 142-149.
[14] 王彬,薛文斌,金小越,等. Q235低碳钢等离子体电解硼碳共渗处理及性能分析[J].材料工程,2014,(7): 28-34. WANG B, XUE W B, JIN X Y, et al. Plasma electrolytic borocarburizing treatment on Q235 low-carbon steel and its properties[J]. Journal of Materials Engineering, 2014,(7): 28-34.
[15] KARTAL G, TIMUR S, SISTA V, et al. The growth of single Fe2B phase on low carbon steel via phase homogenization in electrochemical boriding (PHEB) [J]. Surface & Coatings Technology, 2011, 206(7): 2005-2011.
[16] XIE F, SUN L, CHENG J. Alternating current field assisted pack boriding to Fe2B coating[J]. Surface Engineering, 2013, 29(4): 240-243.
[17] XIE F, SUN L, PAN J W. Characteristics and mechanisms of accelerating pack boriding by direct current field at low and moderate temperatures[J]. Surface & Coatings Technology, 2012, 206(11-12):2839-2844.
[18] BALUSAMY T, NARAYANAN T S N S, RAVICHANDRAN K, et al. Effect of surface mechanical attrition treatment (SMAT) on pack boronizing of AlSi 304 stainless steel[J]. Surface & Coatings Technology, 2013, 232(10): 60-67.
[1] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[2] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[3] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[4] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[5] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[6] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[7] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[8] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[9] 王恩青, 岳建岭, 李淼磊, 李栋, 黄峰. Si含量对VAlSiN涂层微结构、力学性能和摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 70-76.
[10] 王铁钢, 李柏松, 阎兵, 范其香, 刘艳梅, 宫骏, 孙超. 爆炸喷涂WC-Co/MoS2-Ni多层复合自润滑涂层的摩擦学行为[J]. 材料工程, 2017, 45(3): 73-79.
[11] 张雪辉, 周亮亮, 李晓闲, 张陈增, 王成, 章标, 陈颢, 梁彤祥. Y2O3对W-4.9Ni-2.1Fe合金摩擦磨损行为的影响[J]. 材料工程, 2017, 45(11): 115-121.
[12] 曹同坤, 孙何, 王晓明. 采用端面带孔电极进行电火花沉积制备自润滑涂层[J]. 材料工程, 2017, 45(10): 88-94.
[13] 刘伯威, 李亚林, 刘咏, 杨阳, 唐兵, 匡湘铭. 聚丙烯腈纤维对汽车摩擦材料性能的影响[J]. 材料工程, 2017, 45(10): 103-110.
[14] 张占辉, 王义强, 叶国云, 韩子渊, 张志杰, 骆海波. 仿生非光滑表面对对磨副的损伤机理研究[J]. 材料工程, 2016, 44(8): 98-103.
[15] 袁有录, 李铸国. 原位自生WC增强Fe基涂层的组织及干滑动摩擦磨损性能[J]. 材料工程, 2016, 44(5): 47-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn