Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 37-42    DOI: 10.11868/j.issn.1001-4381.2016.000298
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PAN基碳纤维微晶结构对拉伸强度的影响
钟云娇, 边文凤
哈尔滨工业大学 航天学院, 哈尔滨 150001
Effect of Crystallites Structure of PAN-based Carbon Fibers on Tensile Strength
ZHONG Yun-jiao, BIAN Wen-feng
School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(1710 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 碳纤维由微晶和非晶碳所构成。利用X射线衍射(XRD)和拉曼光谱(Raman)研究聚丙烯腈(PAN)基碳纤维微晶结构对拉伸强度的影响机理。结晶度、石墨化程度、微晶无序化程度、微晶尺寸都对拉伸强度有显著影响。结晶度、石墨化程度越大,微晶无序化程度越小拉伸强度越大。微晶尺寸越大拉伸强度越小。比较T300和T700,结晶度、石墨化程度的增加,微晶无序化程度的减小所导致的拉伸强度增量大于微晶尺寸增加所导致的拉伸强度减小量,从而使得T700的拉伸强度大于T300的拉伸强度,同理可知T800的拉伸强度大于T700的拉伸强度。比较M35J和M40J,结晶度、石墨化程度的增加,微晶无序化程度的减小所导致的拉伸强度增量小于微晶尺寸增加所导致的拉伸强度减小量,从而使得M40J的拉伸强度小于M35J的拉伸强度,同理可知M46J的拉伸强度小于M40J的拉伸强度。M35J,M40J和M46J内的较大的微晶对拉伸强度的影响起决定性作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟云娇
边文凤
关键词 PAN基碳纤维拉伸强度微晶尺寸裂纹结晶度    
Abstract:Carbon fiber is composed of crystallite and amorphous carbon. The X-ray diffraction (XRD) and Raman spectroscopy were used to investigate the influencing mechanism of the microstructure of crystallites of polyacrylonitrile (PAN)-based carbon fibers on tensile strength. The results show that the crystallinity, the degree of graphitization, the degree of crystallites structural disorder and the crystallite size have obvious effects on tensile strength. The larger the crystallinity and the degree of graphitization,the larger the tensile strength; the smaller the degree of crystallites structural disorder, the larger the tensile strength; the larger the crystallite size, the smaller the tensile strength. Comparing T300 with T700, the increment of tensile strength, which is caused by the increase of the crystallinity and the degree of graphitization, and the decrease of the degree of crystallites structural disorder, is larger than the decrement of tensile strength, which is caused by the increase of the crystallite size. Therefore, the tensile strength of T700 is larger than that of T300, and the same with that the tensile strength of T800 is larger than that of T700. When M35J is compared with M40J, the increment of tensile strength, which is caused by the increase of the crystallinity and the degree of graphitization, and the decrease of the degree of crystallites structural disorder, is smaller than the decrement of tensile strength, which is caused by the increase of the crystallite size. Therefore, the tensile strength of M40J is smaller than that of M35J, and the same with that the tensile strength of M46J is smaller than that of M40J. In M35J, M40J and M46J, the bigger crystallite size is a crucial factor that affects the tensile strength.
Key wordsPAN-based carbon fibers    tensile strength    crystallite size    crack    crystallinity
收稿日期: 2016-03-15      出版日期: 2017-12-19
中图分类号:  TB321  
通讯作者: 边文风(1963-),女,教授,博士生导师,博士,研究方向:复合材料结构力学、断裂损伤力学、车辆及船舶动力学,联系地址:山东省威海市哈尔滨工业大学(威海)土木工程系(264209),E-mail:bianwf@163.com     E-mail: bianwf@163.com
引用本文:   
钟云娇, 边文凤. PAN基碳纤维微晶结构对拉伸强度的影响[J]. 材料工程, 2017, 45(12): 37-42.
ZHONG Yun-jiao, BIAN Wen-feng. Effect of Crystallites Structure of PAN-based Carbon Fibers on Tensile Strength. Journal of Materials Engineering, 2017, 45(12): 37-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000298      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/37
[1] CHUNG D D L. Carbon fiber composites[M]. Boston:Butterworth Heinemann, 1994:55-77.
[2] ZHONG Y J, BIAN W F, WANG M L. The effect of nanostructure on the tensile modulus of carbon fibers[J]. J Mater Sci, 2016,51(7):3564-3573.
[3] OBERLIN A. Carbonization and graphitization[J]. Carbon, 1984, 22(6):521-541.
[4] JOHNSON D J. Structure-property relationships in carbon fibers[J]. J Phys D:Appl Phys, 1987, 20(3):286-291.
[5] JOHNSON D J. Structural studies of PAN-based CFs[M]//Chemistry and Physics of Carbon Vol 20. New York:Marcel Dekker, 1987:1-58.
[6] OBERLIN A, BONNAMY S, LAFDI K. Structure and texture of carbon fibers[M]//Carbon Fibers. New York:Mercel Dekker, Inc, 1989:85-159.
[7] 张保法. 化学气相沉积中的气相生长碳纤维[J]. 材料工程, 2015, 43(11):9-12. ZHANG B F. Vapor grown carbon fibers produced in chemical vapor deposition[J]. Journal of Materials Engineering, 2015, 43(11):9-12.
[8] 刘福杰, 王浩静, 范立东, 等. MJ系列碳纤维微观结构的剖析[J]. 化工新型材料, 2009, 37(1):41-43. LIU F J, WANG H J, FAN L D, et al. Analysis on the microstructure of MJ series carbon fibers[J]. New Chemical Materials, 2009, 37(1):41-43.
[9] 韩赞, 张学军, 田艳红, 等. PAN基高模量碳纤维微观结构研究[J]. 航天返回与遥感, 2010, 31(5):65-71. HAN Z, ZHANG X J, TIAN Y H, et al. Microstructure of PAN-based high modulus carbon fibers[J]. Space Craft Recovery & Remote Sensing, 2010, 31(5):65-71.
[10] 井敏, 谭婷婷, 王成国, 等. 3种高强中模型PAN基碳纤维的微观结构比较[J]. 功能材料, 2014, 45(8):8028-8032. JING M, TAN T T, WANG C G, et al. Comparison on the microstructure of three high-strength and middle-modulus PAN-based carbon fibers[J]. Journal of Functional Materials, 2014, 45(8):8028-8032.
[11] 薛林兵, 王浩静, 李东风. 牵伸石墨化对石墨纤维结构和力学性能的影响[J]. 新型炭材料, 2006, 21(3):243-247. XUE L B, WANG H J, LI D F. Effect of stress graphitization on the microstructure and mechanical properties of graphite fibers[J]. New Carbon Materials, 2006, 21(3):243-247.
[12] 刘福杰, 王浩静, 范立东. PAN碳纤维在高温石墨化过程中密度的变化规律[J]. 化工新型材料, 2007, 35(1):43-45. LIU F J, WANG H J, FAN L D. The change of density under high temperature heat treatment in PAN-based carbon fibers[J]. New Chemical Materials, 2007, 35(1):43-45.
[13] 郭慧, 黄玉东, 刘丽, 等. T300和国产碳纤维本体的力学性能对比及其分析[J]. 宇航学报, 2009, 30(5):2068-2072. GUO H, HUANG Y D, LIU L, et al. Comparison of mechanical property of unsized T300 and chinese carbon fibers[J]. Journal of Astronautics, 2009, 30(5):2068-2072.
[14] 井敏, 谭婷婷, 王成国, 等. PAN基碳纤维的微观结构与力学性能相关性分析[J]. 航空材料学报, 2013, 33(1):78-85. JING M, TAN T T, WANG C G, et al. Correlation between microstructure and mechanical properties of PAN-based carbon fibers[J]. Journal of Aeronautical Materials, 2013, 33(1):78-85.
[15] TANAKA F, OKABE T, OKUDA H, et al. The effect of nanostructure upon the deformation micromechanics of carbon fibres[J]. Carbon, 2013, 52:372-378.
[16] 贺福. 碳纤维及其应用技术[M]. 北京:化学工业出版社, 2004. HE F. Carbon fiber and its application techniques[M]. Beijing:Chemical Industry Press, 2004.
[17] 贺福. 碳纤维及石墨纤维[M]. 北京:化学工业出版社, 2010. HE F. Carbon fiber and graphite fiber[M]. Beijing:Chemical Industry Press, 2010.
[18] 杨序钢, 吴琪琳. 拉曼光谱的分析与应用[M]. 北京:国防工业出版社, 2008. YANG X G, WU Q L. Raman spectroscopy analysis and application[M]. Beijing:National Defence Industry Press, 2008.
[19] 贺福. 用拉曼光谱研究碳纤维的结构[J]. 高科技纤维与应用, 2005, 30(6):20-25. HE F. Raman spectroscopy studies on structure of carbon fibers[J]. Hi-Tech Fiber & Application, 2005, 30(6):20-25.
[20] NIKIEL L, JAGODZINSKI P W. Raman spectroscopic characterization of graphites:a re-evaluation of spectra structure correlation[J]. Carbon, 1993, 31(8):1313-1317.
[21] 王浩静, 王红飞, 李东风, 等. 石墨化温度对炭纤维微观结构及其力学性能的影响[J]. 新型炭材料, 2005, 20(2):157-163. WANG H J, WANG H F, LI D F, et al. The effect of graphitization temperature on the microstructure and mechanical properties of carbon fibers[J]. New Carbon Materials, 2005, 20(2):157-163.
[22] CHRISTOPHE D, ALI E. Tribology of diamond-like carbon films fundamentals and applications[M]. New York:Springer, 2008.
[23] ZHONG Y J, BIAN W F. Analysis of the tensile moduli affected by microstructures among seven types of carbon fibers[J]. Composites Part B, 2017, 110:178-184.
[24] SPENCE G B. Extended dislocation in the anisotropic elastic continuum approximation[C]//Proceedings of the Fifth Conference on Carbon. Pennsylvania:American Carbon Society, 1963:531-538.
[25] QIU Y P, WENG G J. On the application of Mori-Tanaka's theory involving transversely isotropic spheroidal inclusions[J]. Int Engng Sci, 1990, 28(11):1121-1137.
[26] SHIOYA M, TAKAKU A. Rotation and extension of crystallites in carbon fibers by tensile stress[J]. Carbon, 1994, 32(4):615-619.
[1] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[2] 侯帅, 朱有利, 邱骥, 倪永恒. 喷丸强化对Ti6Al4V半椭圆表面裂纹J积分和裂纹扩展速率的影响[J]. 材料工程, 2019, 47(1): 139-146.
[3] 赵景云, Bamber BLACKMAN, 颜悦, 张旋, 张晓雯. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程, 2018, 46(8): 156-162.
[4] 章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46(7): 12-18.
[5] 宋清华, 肖军, 文立伟, 王显峰, 赵聪, 褚奇奕. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4): 120-126.
[6] 倪秀英, 赵军, 孙加林, 李洪江, 侯冠明, 田源. 梯度结构Al2O3-(W,Ti) C-TiN-Mo-Ni纳米金属陶瓷刀具材料的设计及制备[J]. 材料工程, 2018, 46(2): 50-56.
[7] 杨一林, 卢珣, 王巍巍, 蒋智杰. 热可逆自修复聚氨酯弹性体的制备及表征[J]. 材料工程, 2017, 45(8): 1-8.
[8] 申颜团, 彭金方, 徐志彪, 刘建华, 蔡振兵, 朱旻昊. 18CrNiMo7-6合金钢的弯曲微动疲劳特性[J]. 材料工程, 2017, 45(7): 103-110.
[9] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[10] 宋磊, 陈纪强, 范汶鑫, 王成国. 电化学处理对碳纤维表面加载碳纳米管的影响机理[J]. 材料工程, 2017, 45(11): 15-22.
[11] 王彬, 杨勇新, 岳清瑞, 曾滨. CFRP筋拉伸强度预测模型评价及应用[J]. 材料工程, 2017, 45(10): 117-123.
[12] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
[13] 吴波, 郑帼, 孙玉, 崔莹, 吴炳洋. 有机电解液电化学改性PAN基碳纤维的表面性能[J]. 材料工程, 2016, 44(9): 52-57.
[14] 李永德, 张莉莉, 张冲, 贺莹莹. SUJ2轴承钢超长寿命疲劳行为研究[J]. 材料工程, 2016, 44(8): 85-92.
[15] 王忠兵, 洪强, 罗小杰, 章谏正, 宋英红, 吴松华, 杨保俊. 高分子中空微球的制备及其在聚硫密封剂中的应用[J]. 材料工程, 2016, 44(4): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn