Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (8): 98-105    DOI: 10.11868/j.issn.1001-4381.2016.000313
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
铁基复合材料中碳化钨颗粒的溶解析出行为
吴迎飞, 陈华辉, 李海存, 张婉婷
中国矿业大学(北京) 机电与信息工程学院, 北京 100083
Dissolution and Precipitation Behavior of WC Particles in Iron Matrix Composites
WU Ying-fei, CHEN Hua-hui, LI Hai-cun, ZHANG Wan-ting
School of Mechanical Electronic and Information Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
全文: PDF(5030 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以Fe30A自熔合金为基体,铸造碳化钨和钴包碳化钨为增强颗粒,采用粉末冶金方法制备大颗粒、小颗粒及混合颗粒级配增强铁基复合材料,并对其组织和相结构进行分析。结果表明:铸造碳化钨颗粒的溶解从边缘开始,与基体发生反应生成絮状的过渡层Fe6W6C以及分散的小颗粒状Ni17W3,钴包碳化钨部分颗粒完全转化为小颗粒状Ni17W3;混合颗粒增强的复合材料,其组织形貌为大颗粒间均匀分布小颗粒,小颗粒一部分来源于原始颗粒,另一部分为颗粒与基体反应而生成的Ni17W3。对3种颗粒增强复合材料进行硬度及磨损性能测试,结果表明,级配增强复合材料的硬度高、耐磨性更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴迎飞
陈华辉
李海存
张婉婷
关键词 WC颗粒溶解金属基复合材料颗粒级配    
Abstract:Different sizes and graded mixed WC particles reinforced iron matrix composites were prepared by powder metallurgy,in which Fe30A self-fluxing alloy was used as the matrix, and the cast WC and the WC-Co as the reinforcement. Microstructure and phase of the composites were analyzed. The results show that the cast WC particles are dissolved from the edge of the particles and react with the matrix to generate the flocculent Fe6W6C interlayer and disperse Ni17W3 small particles, and part of the WC-Co particles are transformed into Ni17W3 particles. The microstructural morphology of the mixed particle reinforced composite materials presents that small particles are uniformly distributed between large particles, and the small particles can be the primary particles or the Ni17W3 particles. The hardness and wear properties tests of the composite materials show that the graded mixed reinforced composite has higher hardness and better wear resistance.
Key wordsWC particle    dissolution    metal matrix composite    grain gradation
收稿日期: 2016-03-18      出版日期: 2018-08-17
中图分类号:  TB331  
通讯作者: 陈华辉(1956-),女,教授,研究方向:金属和陶瓷基耐磨复合材料、表面强化技术及涂层材料、材料腐蚀及耐蚀涂层,E-mail:chh@cumtb.edu.cn     E-mail: chh@cumtb.edu.cn
引用本文:   
吴迎飞, 陈华辉, 李海存, 张婉婷. 铁基复合材料中碳化钨颗粒的溶解析出行为[J]. 材料工程, 2018, 46(8): 98-105.
WU Ying-fei, CHEN Hua-hui, LI Hai-cun, ZHANG Wan-ting. Dissolution and Precipitation Behavior of WC Particles in Iron Matrix Composites. Journal of Materials Engineering, 2018, 46(8): 98-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000313      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/98
[1] 张国赏, 刘国宇, 邢建东, 等. WCp/Mn13表面复合材料的制备及其冲击磨损性能[J]. 西安交通大学学报, 2005, 39(7):757-761. ZHANG G S, LIU G Y, XING J D, et al. Fabrication and impact wear resistance of WCp/Mn13 surface composites[J]. Journal of Xi'an Jiaotong University, 2005, 39(7):757-761.
[2] 王恩泽, 徐雁平, 鲍崇高, 等. Al2O3颗粒/耐热钢复合材料的制备及高温磨料磨损性能[J]. 复合材料学报, 2004, 21(1):56-60. WANG E Z, XU Y P, BAO C G, et al. Fabrication of Al2O3/heat-resistant steel composite and its wear-resistance at high temperature and abrasive[J]. Acta Materiae Compositae Sinica, 2004, 21(1):56-60.
[3] FEDRIZZI A, PELLIZZARI M, ZADRA M. Production of a particle reinforced hot work tool steel by mechanical alloying[J]. La Metallurgia Italiana, 2013, 105(3):39-46.
[4] TIROSH J, SHACHAK N, SHIRIZLY A, et al. Thermal-history effect on the yield strength of particulate metal matrix composite[J]. International Journal of Mechanical Sciences, 2014, 78(1):52-59.
[5] 蒋业华, 周荣, 卢德宏. 冲击角度对WC/铁基表面复合材料冲蚀磨损性能的影响[J]. 铸造, 2004, 53(7):521-524. JIANG Y H, ZHOU R, LU D H. Effects of impact angle on erosive resistance of WC/cast iron matrix surface composites[J]. Foundry, 2004, 53(7):521-524.
[6] 黄汝清, 李祖来, 山泉, 等. 钢、铁基复合材料中铸造碳化钨颗粒的分解过程[J]. 特种铸造及有色合金, 2012, 32(2):164-167. HUANG R Q, LI Z L, SHAN Q, et al. Decomposition process of casting tungsten carbide particle in steel/iron substrate[J]. Special Casting & Nonferrous Alloys, 2012, 32(2):164-167.
[7] 李祖来, 蒋业华, 叶小梅, 等. WC在WC/灰铸铁复合材料基体中的溶解[J]. 复合材料学报, 2007, 24(2):13-17. LI Z L, JIANG Y H, YE X M, et al. Dissolution of tungsten carbide particulates (WC) in the matrix of WC reinforced gray cast iron matrix composite[J]. Acta Materiae Compositae Sinica, 2007, 24(2):13-17.
[8] 冯志扬, 李祖来, 山泉, 等. 颗粒粒度对碳化钨颗粒增强铁基复合材料界面的影响[J]. 材料工程, 2016, 44(1):83-88. FENG Z Y, LI Z L, SHAN Q, et al. Effect of particles size on interface of tungsten carbide particles reinforced iron matrix composites[J].Journal of Materials Engineering,2016,44(1):83-88.
[9] 刘宝, 尤显卿, 张炎, 等. 离心铸造WC/废弃轴承钢复合材料的显微组织结构研究[J]. 硬质合金, 2008, 25(3):143-147. LIU B, YOU X Q, ZHANG Y, et al. Research on microstructure of WC/discarded bearing steel composites by centrifugal casting[J].Cemented Carbide, 2008, 25(3):143-147.
[10] 李永涛. 成型剂及添加剂(C,W)对Ti(C,N)基金属陶瓷组织和性能的影响[D]. 武汉:华中科技大学, 2006. LI Y T. Effect of binder and addition (C, W) on the microstructure and mechanical properties of Ti(C, N)-based cermets[D]. Wuhan:Huazhong University of Science and Technology, 2006.
[11] ZEMANOVÁ M, KRIVOSUDSKÁ M, CHOVANCOVÁ M, et al. Pulse current electrodeposition and corrosion properties of Ni-W alloy coatings[J]. Journal of Applied Electrochemistry, 2011, 41(9):1077-1085.
[12] 路程. 激光熔覆Ni基球形WC复合涂层的组织与性能研究[D]. 广州:华南理工大学, 2012. LU C. Microstructure and performance of Ni-based spherical WC composite coating by laser cladding[D]. Guangzhou:South China University of Technology, 2012.
[13] 袁有录, 李铸国. Ni60A+WC增强梯度涂层中WC的溶解与碳化物的析出特征[J]. 材料工程, 2013(11):12-19. YUAN Y L, LI Z G. Dissolving and precipitating characteristics of WC and carbides in the Ni60A+WC graded coating[J]. Journal of Materials Engineering, 2013(11):12-19.
[14] GUO C, ZHOU J, CHEN J, et al. Improvement of the oxidation and wear resistance of pure Ti by laser cladding at elevated temperature[J]. Surface and Coatings Technology, 2010, 205(7):2142-2151.
[15] SUETIN D V, SHEIN I R, IVANOVSKⅡ A L. Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations[J]. Physica B:Condensed Matter, 2009, 404(20):3544-3549.
[16] SUETIN D V, SHEIN I R, IVANOVSKⅡ A L. Structural, electronic properties and stability of tungsten mono-and semi-carbides:a first principles investigation[J]. Journal of Physics and Chemistry of Solids, 2009, 70(1):64-71.
[17] 隋育栋, 蒋业华, 李祖来, 等. WC溶解对WCp/钢基表层复合材料组织和性能的影响[J]. 材料热处理学报, 2012, 33(增刊1):7-10. SUI Y D, JIANG Y H, LI Z L, et al. Effects of WC dissolute in matrix on microstructure and properties of WC reinforced steel composite[J]. Transactions of Materials and Heat Treatment, 2012, 33(Suppl 1):7-10.
[1] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[2] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[3] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[4] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[5] 王剑桥, 雷卫宁, 薛子明, 钱海峰, 刘维桥. 石墨烯增强金属基复合材料的制备及应用研究进展[J]. 材料工程, 2018, 46(12): 18-27.
[6] 叶想平, 李英雷, 翁继东, 蔡灵仓, 刘仓理. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程, 2018, 46(12): 28-37.
[7] 李佩桓, 张勇, 王涛, 张亚洲, 李钊, 贾崇林, 曲选辉. 连续SiC纤维增强金属基复合材料研究进展[J]. 材料工程, 2016, 44(8): 121-129.
[8] 张丹丹, 战再吉. 石墨烯/金属复合材料力学性能的研究进展[J]. 材料工程, 2016, 44(5): 112-119.
[9] 李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤. CNTs/Al5083复合材料力学性能及增强机制[J]. 材料工程, 2015, 43(8): 1-6.
[10] 刘栓, 孙虎元, 孙立娟, 张宁, 陈建敏. Galvalume镀层钢在青岛海域海水中的耐蚀性能[J]. 材料工程, 2015, 43(3): 42-47.
[11] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[12] 董凤, 陈少平, 胡利方, 樊文浩, 孟庆森. 电场作用下AZ31B/Cu扩散界面的结构及性能[J]. 材料工程, 2015, 43(2): 35-40.
[13] 何天兵, 胡仁伟, 何晓磊, 李沛勇. 碳纳米管增强金属基复合材料的研究进展[J]. 材料工程, 2015, 43(10): 91-101.
[14] 郎宇平, 陈海涛, 翁宇庆, 屈华鹏. 热力学计算在高氮奥氏体不锈钢研究中的应用[J]. 材料工程, 2013, 0(5): 16-22.
[15] 袁有录, 李铸国. Ni60A+WC增强梯度涂层中WC的溶解与碳化物的析出特征[J]. 材料工程, 2013, 0(11): 12-19,25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn