Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (6): 118-128    DOI: 10.11868/j.issn.1001-4381.2016.000353
  综述 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯纳米带杂化粒子和石墨烯纳米带的研究进展
郑玉婴1, 曹宁宁2
1 福州大学 材料科学与工程学院, 福州 350108;
2 西安向阳航天材料股份有限公司, 西安 710025
Research Progress on Graphene Oxide Nanoribbons Nanohybrids and Graphene Nanoribbons
ZHENG Yu-ying1, CAO Ning-ning2
1 College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China;
2 Xi'an Sunward Aeromat Co., Ltd., Xi'an 710025, China
全文: PDF(8213 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 氧化石墨烯纳米带杂化粒子是将氧化石墨烯纳米带(GONRs)与其他纳米粒子经π-π键、氢键等结合方式复合在一起,通过这种特殊的结合形态一方面可以有效地防止GONRs的聚积,另一方面新的纳米粒子的引入能够赋予该杂化材料某些特殊的性能,从而有利于充分发挥GONRs杂化材料在聚合物改性等领域的综合性能。本文综述了氧化石墨烯纳米带杂化粒子的制备方法、性能和应用现状。此外,针对GONRs的还原产物石墨烯纳米带(GNRs)的结构、性能、制备方法及其应用领域也进行了系统性地论述。相关研究表明,氧化石墨烯纳米带杂化粒子的设计与制备是氧化石墨烯纳米带迈向实用领域的一个有效途径,而石墨烯纳米作为石墨烯的一种特殊结构的二维变体,继承了石墨烯优良的导电和导热等性能,同时特殊的边缘效应,因而呈现出了更广阔的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑玉婴
曹宁宁
关键词 氧化石墨烯纳米带杂化粒子石墨烯纳米带    
Abstract:Graphene oxide nanoribbons (GONRs) nanohybrids were prepared by combining GONRs and other nanoparticles together via the forms of π-π bond or hydrogen bond. This specific combination form can effectively prevent GONRs accumulation, on the other hand, the introduction of new nanoparticles can bring some special properties to the nanohybrids, which is beneficial to give full play to the comprehensive performance of GONRs nanohybrids in polymer modification and other application areas. In this paper, the preparation methods, properties, and application status of GONRs nanohybrids were reviewed in details. Moreover, the structure characteristics, properties, preparation methods and applications of GNRs (as the GONRs reduction product) were also discussed. The related studies have shown that, design and preparation of GONRs nanohybrids is an effective way to the practical application of GONRs, and GNRs as a special two-dimensional variant of graphene, which inherits excellent electrical properties and thermal conductivity from graphene, meanwhile, the special edge effect shows a broader application prospect.
Key wordsgraphene oxide nanoribbons nanohybrids    graphene nanoribbons
收稿日期: 2016-03-27      出版日期: 2017-06-20
中图分类号:  O613.71  
  TB383  
通讯作者: 郑玉婴(1959-),女,教授,博士生导师,研究方向:功能型高分子基复合材料,联系地址:福建省福州市闽侯县上街镇大学城学园路2号福州大学新校区材料科学与工程学院(350108),E-mail:yyzheng@fzu.edu.cn     E-mail: yyzheng@fzu.edu.cn
引用本文:   
郑玉婴, 曹宁宁. 氧化石墨烯纳米带杂化粒子和石墨烯纳米带的研究进展[J]. 材料工程, 2017, 45(6): 118-128.
ZHENG Yu-ying, CAO Ning-ning. Research Progress on Graphene Oxide Nanoribbons Nanohybrids and Graphene Nanoribbons. Journal of Materials Engineering, 2017, 45(6): 118-128.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000353      或      http://jme.biam.ac.cn/CN/Y2017/V45/I6/118
[1] LIU J, RINZLER A G, DAI H, et al. Fullerene pipes[J]. Science, 1998, 280(5367):1253-1256.
[2] THOMPSON B C, FRECHET J M J. Polymer-fullerene composite solar cells[J]. Angewandte Chemie International Edition, 2008, 47(1):58-77.
[3] OBREJA V V. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material-a review[J]. Physica E:Low-dimensional Systems and Nanostructures, 2008, 40(7):2596-2605.
[4] 王雯, 王成国, 郭宇, 等. 新型碳基复合吸波材料的制备及性能研究[J]. 航空材料学报, 2012, 32(1):63-67. WANG W, WANG C G, GUO Y, et al. Preparation and electromagnetic characteristic of novel carbon based composites[J]. Journal of Aeronautical Materials, 2012, 32(1):63-67.
[5] MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131):60-63.
[6] XU M, LIANG T, SHI M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5):3766-3798.
[7] 马文石, 周俊文, 程顺喜. 石墨烯的制备与表征[J]. 高校化学工程学报, 2010, 24(4):719-722. MA W S, ZHOU J W, CHEN S X. Preparation and characterization of graphene[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(4):719-722.
[8] HASHIMOTO A, SUENAGA K, GLOTER A, et al. Direct evidence for atomic defects in graphene layers[J]. Nature, 2004, 430(7002):870-873.
[9] 孙帅. 石墨烯缺陷的特点与应用研究[D]. 天津:天津大学, 2015. SUN S. Characteristics and applications for defects of graphene[D]. Tianjin:Tianjin University, 2015.
[10] 杨勇辉, 孙红娟, 彭同江,等. 石墨烯薄膜的制备和结构表征[J]. 物理化学学报, 2011, 27(3):736-742. YANG Y H, SUN H J, PENG T J, et al. Synthesis and structural characterization of graphene-based membranes[J]. Acta Phys-chim Sin, 2011, 27(3):736-742.
[11] 杨程, 陈宇滨, 田俊鹏,等. 功能化石墨烯的制备及应用研究进展[J]. 航空材料学报, 2016, 36(3):40-56. YANG C, CHEN Y B, TIAN J P, et al. Development in preparation and application of graphene functionalization[J]. Journal of Aeronautical Materials, 2016, 36(3):40-56.
[12] 司晨. 石墨烯及其衍生物:掺杂, 应变与界面效应的理论研究[D]. 北京:清华大学, 2014. SI C. Graphene and its derivatives:a theoretical study of doping, strain and interface effects[D]. Beijing:Tsinghua University, 2014.
[13] HUANG Y X, LIU X W, XIE J F, et al. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems[J]. Chemical Communications, 2011, 47(20):5795-5797.
[14] WONG C H, CHUA C K, KHEZRI B, et al. Graphene oxide nanoribbons from the oxidative opening of carbon nanotubes retain electrochemically active metallic impurities[J]. Angewandte Chemie, 2013, 125(33):8847-8850.
[15] 曹宁宁, 郑玉婴, 刘阳龙, 等. 层叠状功能化石墨烯纳米带/TPU复合材料薄膜的制备与性能[J]. 复合材料学报, 2016, 33(7):1371-1381. CAO N N, ZHENG Y Y, LIU Y L, et al. Fabrication and properties of stack-like functionalized graphene nanoribbons/TPU composite films[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1371-1381.
[16] 曹宁宁, 郑玉婴, 樊志敏, 等. 氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备及表征[J]. 高分子学报, 2015, (8):963-972. CAO N N, ZHENG Y Y, FAN Z M, et al. Preparation and characterization of graphene oxide nanoribbons-carbon nanotubes/TPU composite films[J]. Acta Polymerica Sinica, 2015, (8):963-972.
[17] XIANG C, COX P J, KUKOVECZ A, et al. Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances[J]. ACS Nano, 2013, 7(11):10380-10386.
[18] YOUSEFI N, GUDARZI M, ZHENG Q, et al. Self-alignment and high electrical conductivity of ultralarge graphene oxide-polyurethane nanocomposites[J]. Journal of Materials Chemistry, 2012, 22(25):12709-12717.
[19] WONG C, PUMERA M. Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride[J]. Journal of Materials Chemistry C, 2014, 2(5):856-863.
[20] KOSYNKIN D V, LU W, SINITSKⅡ A, et al. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor[J]. ACS Nano, 2011, 5(2):968-974.
[21] KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKⅡ A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240):872-876.
[22] 范金辰. 石墨烯的制备与功能化及其在复合材料中的应用研究[D]. 上海:上海交通大学, 2014. FAN J C. Preparation and functionalization of graphene and its application in composites[D]. Shanghai:Shanghai Jiao Tong University, 2014.
[23] 郑玉婴. 功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J]. 材料工程, 2015, 43(2):96-102. ZHENG Y Y. Preparation and characterization of functionalized graphene oxide nanoribbons/EVA composite films[J]. Journal of Materials Engineering, 2015, 43(2):96-102.
[24] 张亚楠, 史子兴, 范金辰, 等. 表面修饰氧化石墨烯纳米带增强PMMA的研究[J]. 合成纤维工业, 2013, 36(5):1-6. ZHANG Y N, SHI Z X, FAN J C, et al. Reinforcement of poly(methyl methacrylate) with surface-modified graphene oxide nanoribbon[J]. China Synthetic Fiber Industry, 2013, 36(5):1-6.
[25] 郑辉东. 3D氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备与性能[J]. 材料工程, 2016, 44(6):1-8. ZHENG H D. Fabrication and properties of 3D graphene oxide nanoribbons-carbon nanotubes/TPU composite films[J]. Journal of Materials Engineering, 2016, 44(6):1-8.
[26] 朱刚兵, 裴元鹏, 陈煜轩,等. 基于碳纳米管@氧化石墨烯纳米带核壳结构复合物的甲萘胺电化学传感研究[J]. 高等学校化学学报, 2015, (10):1888-1893. ZHU G B, PEI Y P, CHEN Y X, et al. Electrochemical sensing of 1-naphthylamine based on multiwalled carbon nanotubes@graphene oxide nanoribbons core-shell heterostructure[J]. Chemical Journal of Chinese Universities, 2015, (10):1888-1893.
[27] ZHANG S, TANG S, LEI J, et al. Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing[J]. Journal of Electroanalytical Chemistry, 2011, 656(1):285-288.
[28] FAN J C, SHI Z X, TIAN M, et al. Unzipped multiwalled carbon nanotube oxides/multiwalled carbon nanotube hybrids for polymer reinforcement[J]. ACS Applied Materials and Interfaces, 2012, 4(11):5956-5965.
[29] 郑玉婴. 氧化石墨烯纳米带与氧化石墨烯增强热塑性聚氨酯薄膜的制备及性能[J]. 高分子材料科学与工程, 2015, 31(4):180-185. ZHENG Y Y. Preparation and properties of graphene oxide nanoribbons and graphene oxide reinforced thermoplastic polyurethane films[J]. Polymer Materials Science and Engineering, 2015, 31(4):180-185.
[30] SHARMA P, BHATTI T S. A review on electrochemical double-layer capacitors[J]. Energy Conversion and Management, 2010, 51(12):2901-2912.
[31] 黄海平, 朱俊杰. 新型碳材料-石墨烯的制备及其在电化学中的应用[J]. 分析化学, 2011, 39(7):963-971. HUANG H P, ZHU J J. Preparation of novel carbon-based nanomaterial of graphene and its applications for electrochemistry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(7):963-971.
[32] HSU F H, WU T M. Enhanced capacitance of one-dimensional polypyrrole/graphene oxide nanoribbon nanocomposite as electrodematerial for high performance supercapacitors[J]. Synthetic Metals, 2014, 198:188-195.
[33] LIN L Y, YEH M H, TSAI J T, et al. A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material[J]. Journal of Materials Chemistry A, 2013, 1(37):11237-11245.
[34] ISMAILA N S, LE Q H, YOSHIKAWAA H, et al. Development of non-enzymatic electrochemical glucose sensor based on graphene oxide nanoribbon-gold nanoparticle hybrid[J]. Electrochimica Acta, 2014, 146:98-105.
[35] LIU Q, FEI A, HUAN J, et al. Effective amperometric biosensor for carbaryl detection based on covalent interaction acetylcholine esterase on multiwall carbon nanotubes/graphene oxide nanoribbons nanostructure[J]. Journal of Electroanalytical Chemistry, 2015, 740:8-13.
[36] 郑小青, 冯苗, 詹红兵. 石墨烯纳米带[J]. 化学进展, 2012, 24(12):2320-2329. ZHENG X Q, FENG M, ZHAN H B. Graphene nanoribbons[J]. Progress in Chemistry, 2012, 24(12):2320-2329.
[37] CHEN Z, LIN Y M, ROOKS M J, et al. Graphene nano-ribbon electronics[J]. Physica E:Low-dimensional Systems and Nanostructures, 2007, 40(2):228-232.
[38] BARONE V, HOD O, SCUSERIA G E. Electronic structure and stability of semiconducting graphene nanoribbons[J]. Nano Letters, 2006, 6(12):2748-2754.
[39] BAI J W, DUAN X F, HUANG Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask[J]. Nano Letters, 2009, 9(5):2083-2087.
[40] WANG X, OUYANG Y, LI X, et al. Room-temperature all-semicoducting sub-10-nm graphene nanoribbon field-effect transistors[J]. Physical Review Letters, 2008, 100(20):3112-3118.
[41] 马诚, 李继山. 单壁碳纳米管超声裂解制备石墨烯纳米带[J]. 中国科技论文, 2014, 9(3):272-275. MA C, LI J S. Preparation of graphene nanoribbons based on unzipping single-walled carbon nanotubes by sonication[J]. China Science Paper, 2014, 9(3):272-275.
[42] LI X, WANG X, ZHANG L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867):1229-1232.
[43] CAMPOSDELGADO J, ROMOHERRERA J M, JIA X T, et al. Bulk production of a new form of sp2 carbon:crystalline graphene nanoribbons[J]. Nano Letters, 2008, 8(9):2773-2778.
[44] WEI D C, LIU Y Q, ZHANG H L, et al. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches[J]. Journal of the American Chemical Society, 2009, 131(31):11147-11154.
[45] CAI J, RUFFIEUX P, JAAFAR R, et al. Atomically precise bottom-up fabrication of graphene nanoribbon[J]. Nature, 2010, 466(7305):470-473.
[46] RAFIEE M A, LU W, THOMAS A V, et al. Graphene Nanoribbon Composites[J]. ACS Nano, 2010, 4(12):7415-7420.
[47] ZAMINPAYMA E, NAYEBI P. Mechanical and electrical properties of functionalized graphene nanoribbon:A study of reactive molecular dynamic simulation and density functional tight-binding theory[J]. Physica B:Condensed Matter, 2015, 459:29-35.
[48] TARUN B, ALEKS A, BARBARA P, et al. Enhanced electrochemical lithium storage by graphene nanoribbons[J]. Journal of American Chemical Society, 2010, 132(36):12556-12558.
[49] LIN J, RAJI A O, NAN K W, et al. Iron oxide nanoparticle and graphene nanoribbon composites as an anode materials for high-performance Li-iron batteries[J]. Advanced Functional Materials, 2014, 24(14):2044-2048.
[50] LIU M K, SONG Y F, HE S X, et al. Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction[J]. ACS Applied Materials and Interfaces, 2014, 6(6):4214-4222.
[51] BETS K V, YAKOBSON B I. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons[J]. Nano Research, 2009, 2(2):161-166.
[52] CUONG N T, OTANI M, OKADA S. Absence of edge states near the 120° corners of zigzag graphene nanoribbons[J]. Physical Review B, 2013, 87(4):45424-45428.
[1] 郑辉东. 3D氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备与性能[J]. 材料工程, 2016, 44(6): 1-8.
[2] 郑玉婴. 功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J]. 材料工程, 2015, 43(2): 96-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn