Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 112-116    DOI: 10.11868/j.issn.1001-4381.2016.000354
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法
李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Prediction of High Temperature Creep Deformation and Rupture Life on HP Heat Resistant Alloy Using Zc Parameter
LI Hui-fang, ZHAO Jie, CHENG Cong-qian, MIN Xiao-hua, CAO Tie-shan, XU Jun
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(2496 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过研究HP耐热合金的高温蠕变实验数据,提出一种基于Zc参数的高温蠕变变形预测方法,并且利用该方法对HP耐热合金的高温蠕变性能进行预测和分析。结果表明:在1000,980℃和930℃下,蠕变应变分别为0.5%和1%时,预测数据与HP耐热合金的蠕变实验数据符合较好。同时利用基于Zc参数的高温蠕变变形预测方法对HP耐热合金的高温持久寿命进行了评估,结果表明由该方法得到的预测主曲线与耐热合金的持久实验数据吻合较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李会芳
赵杰
程从前
闵小华
曹铁山
许军
关键词 HP耐热合金蠕变持久寿命预测Zc参数    
Abstract:Through the study on high temperature creep data of HP heat resistant alloy, a prediction method of high temperature creep deformation based on Z parameter was proposed. The creep resistance of HP heat resistant alloy was predicted by this method. The results indicate that the predicted data are in good agreement with the HP heat resistant alloy creep experimental data at 1000,980℃ and 930℃. At the same time, the creep rupture life of heat resistant alloy was evaluated by this method, the results show that the predicted principal curves agree well with the experimental data.c
Key wordsHP heat resistant alloy    creep    rupture life prediction    Z parameterc
收稿日期: 2016-03-27      出版日期: 2018-03-20
中图分类号:  TG132.3+3  
基金资助: 
通讯作者: 赵杰(1964-),男,博士,教授,主要从事材料强度及可靠性预测,联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学材料科学与工程学院(116024),E-mail:jiezhao@dlut.edu.cn     E-mail: jiezhao@dlut.edu.cn
引用本文:   
李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
LI Hui-fang, ZHAO Jie, CHENG Cong-qian, MIN Xiao-hua, CAO Tie-shan, XU Jun. Prediction of High Temperature Creep Deformation and Rupture Life on HP Heat Resistant Alloy Using Zc Parameter. Journal of Materials Engineering, 2018, 46(3): 112-116.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000354      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/112
[1] 潘晖,赵海生. 镍基钎料钎焊K465高温合金大间隙接头组织与性能研究[J]. 材料工程,2017,45(5):86-93. PAN H,ZHAO H S. Research on microstructure and mechanical properties of wide-gap brazed joints of K465 superalloy using nickel-base brazing filler metal[J]. Journal of Materials Engineering,2017,45(5):86-93.
[2] 胡春燕,刘新灵,陶春虎,等. 气膜孔分布对DD6单晶高温合金持久性能及断裂行为的影响[J]. 材料工程,2016,44(5):93-100. HU C Y,LIU X L,TAO C H,et al. Influence of cooling holes distribution on stress rupture property and fracture behavior of single crystal superalloy DD6[J]. Journal of Materials Engineering,2016,44(5):93-100.
[3] 王丽丽,李嘉荣,唐定中,等. SiO2-ZrO2陶瓷型芯与DZ125,DD5和DD6三种铸造高温合金的界面反应[J].材料工程,2016,44(3):9-14. WANG L L,LI J R,TANG D Z,et al. Interfacial reactions between SiO2-ZrO2 ceramic core and DZ125,DD5,DD6 casting superalloys[J]. Journal of Materials Engineering,2016,44(3):9-14.
[4] PRAGER M. The omega method-an engineering approach to life assessment[J]. Journal of Pressure Vessel Technology,2000,122(3):273-280.
[5] PARK K S, BAE D S, LEE S K, et al. Creep modeling for life evaluation and strengthening mechanism of tungsten alloyed 9-12% Cr steels[J]. Metals and Materials International,2006,12(5):385-391.
[6] KURATA Y, UTSUMI H. Applicability of creep constitutive equations to creep curves under constant load[J]. Acta Metallurgica Sinica (English Letters),2009,11(6):397-404.
[7] MARUYAMA K, OIKAWA H. Comments on "exponential descriptions of normal creep curves by SGR Brown, RW Evans and B Wilshire"[J]. Scripta Metallurgica,1987,21(2):233-237.
[8] 于慧臣,董成利,焦泽辉,等. 一种TiAl合金的高温蠕变和疲劳行为及其寿命预测方法[J]. 金属学报,2013,49(11):1311-1317. YU H C,DONG C L,JIAO Z H,et al. High temperature creep and fatigue behavior and life prediction method of a TiAl alloy[J]. Acta Metallurgica Sinica,2013,49(11):1311-1317.
[9] Le MAY I. Developments in parametric methods for handling creep and creep-rupture data[J]. Journal of Engineering Materials and Technology,1979,101(4):326-330.
[10] LARSON F R, MILLER J. A time-temperature relationship for rupture and creep stresses[J]. Transactions of the ASME,1952, 74:765-775.
[11] 江冯,李萍,程从前,等. θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J]. 材料工程,2015,43(7):87-92. JIANG F,LI P,CHENG C Q,et al. Comparative analysis of creep behavior prediction of heat resistant steel based on theta projection and composite model[J]. Journal of Materials Engineering,2015,43(7):87-92.
[12] ZHAO Y P, GONG J M, YONG J, et al. Creep behaviours of Cr25Ni35Nb and Cr35Ni45Nb alloys predicted by modified theta method[J]. Materials Science and Engineering:A,2016,649:1-8.
[13] HARRISON W, WHITTAKER M, WILLIAMS S. Recent advances in creep modelling of the nickel base superalloy, alloy 720Li[J]. Materials,2013,6(3):1118-1137.
[14] KIM W, KIM S, LEE C. Long-term creep characterization of Gr. 91 steel by modified creep constitutive equations[J]. Metals and Materials International,2011,17(3):497-504.
[15] 赵杰. 耐热钢持久性能的统计分析及可靠性预测[M]. 北京:科学出版社,2011. ZHAO J. Statistical analysis and reliability prediction of the endurance property on the heat resistant steel[M]. Beijing:Science Press,2011.
[16] 赵杰,李东明,方园园. T91/P91钢持久性能的统计分析及可靠性预测[J]. 金属学报,2009,45(7):835-839. ZHAO J,LI D M,FANG Y Y. Statistical analysis and reliability prediction of creep rupture property for T91/P91 steel[J]. Acta Metallurgica Sinica,2009,45(7):835-839.
[1] 刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
[2] 闫化锦, 田素贵, 朱新杰, 于慧臣, 舒德龙, 张宝帅. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87-95.
[3] 崔璐, 石红梅, 张涛, 王澎, 李臻. 热交变载荷下10% Cr耐热钢蠕变疲劳裂纹萌生特征[J]. 材料工程, 2017, 45(9): 143-148.
[4] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[5] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[6] 舒德龙, 田素贵, 吴静, 张宝帅, 梁爽. 一种含4.5%Re/3.0%Ru的单晶镍基合金的高温蠕变行为[J]. 材料工程, 2017, 45(3): 41-46.
[7] 王天佑, 王小蒙, 赵子华, 张峥. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程, 2017, 45(2): 88-95.
[8] 舒德龙, 田素贵, 梁爽, 张宝帅. 一种4.5% Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45(1): 93-100.
[9] 李振荣, 马春蕾, 蒋成勇, 田素贵, 陈礼清, 刘相华. 热连轧GH4169合金的点阵常数与蠕变性能[J]. 材料工程, 2016, 44(3): 97-102.
[10] 王岚, 王宇, 邢永明, 胡江三. 短期老化对橡胶粉改性沥青流变性能的影响[J]. 材料工程, 2016, 44(1): 54-59.
[11] 江冯, 李萍, 程从前, 刘春慧, 赵杰. θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J]. 材料工程, 2015, 43(7): 87-92.
[12] 原可义, 韩赞东, 陈以方, 钟约先. P91钢焊缝蠕变非线性超声检测中的衰减修正方法研究[J]. 材料工程, 2014, 0(7): 50-54.
[13] 张果, 杜军, 李文芳, 豆琦, 蔡添祥. Ca和La对Mg-5Sn-2Si合金组织和蠕变性能的影响[J]. 材料工程, 2013, 0(4): 81-84.
[14] 杨少锋, 王再友. 压铸镁合金的研究进展及发展趋势[J]. 材料工程, 2013, 0(11): 81-88.
[15] 赵建华, 陈泽宇, 李思宇, 杨金龙, 邓运来. 初始状态对2124铝合金蠕变时效行为与力学性能的影响[J]. 材料工程, 2012, 0(10): 63-67,72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn