Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (3): 61-66    DOI: 10.11868/j.issn.1001-4381.2016.000484
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究
刘多1,2,*(), 刘景和2, 周英豪1, 宋晓国1,2, 牛红伟2, 冯吉才1,2
1 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001
2 哈尔滨工业大学(威海) 山东省特种焊接技术重点实验室, 山东 威海 264209
Research on Residual Stress in Copper/Al2O3 Ceramic/Stainless Steel Composite Structure Brazed Joint
Duo LIU1,2,*(), Jing-he LIU2, Ying-hao ZHOU1, Xiao-guo SONG1,2, Hong-wei NIU2, Ji-cai FENG1,2
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China
全文: PDF(3520 KB)   HTML ( 25 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用有限元数值模拟的方法研究AgCuTi钎焊紫铜/Al2O3陶瓷/不锈钢复合结构的形变和残余应力分布情况,并对模拟结果进行实验验证。结果表明:残余应力主要分布在接头区,并且该区形变较小。陶瓷端的残余应力对接头性能影响较大,由于线膨胀系数差异过大,不锈钢陶瓷侧易产生裂纹缺陷,接头倾向于在该区域断裂,紫铜侧陶瓷端TiO反应层的形成导致该区域裂纹的出现,降低了接头的性能。研究各应力分量对最终残余应力的贡献,结果显示环向应力和轴向应力在陶瓷端所产生的拉应力是造成接头强度降低的主要因素。接头拉剪实验表明,接头主要在靠近不锈钢侧的陶瓷端断裂,验证了模拟结果的准确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘多
刘景和
周英豪
宋晓国
牛红伟
冯吉才
关键词 紫铜/氧化铝陶瓷/不锈钢复合结构钎焊形变残余应力有限元数值模拟    
Abstract

The distribution of deformation and residual stress in copper/Al2O3 ceramic/stainless steel brazed joint was investigated by means of finite element numerical simulation. Brazing experiments were conducted to verify the accuracy of simulation results. The results show that residual stress is mainly distributed in the joint area where the deformation is not obvious. Residual stress at the ceramic side has a significant effect on properties of the joints. The fracture tends to occur in the ceramic near stainless steel due to the mismatch of their linear expansion coefficients. The brazed joints may also crack in the ceramic at copper side when TiO reaction layer is formed, and the mechanical properties of the joint are reduced. The contribution of stress component to final residual stress was also analyzed. The tension stress generated by hoop stress and axial stress is the principle factor which decreases the properties of brazed joint. The brazing specimens mainly fracture in the ceramic side near stainless steel, and the accuracy of simulation has been proved by brazing experiments.

Key wordscopper/Al2O3 ceramic/stainless steel composite structure    brazing    deformation    residual stress    finite element numerical simulation
收稿日期: 2016-04-24      出版日期: 2018-03-20
中图分类号:  TG454  
基金资助:国家自然科学基金(51505105);山东省自然科学基金(ZR2014EEQ001)
通讯作者: 刘多     E-mail: liuduo0376@163.com
作者简介: 刘多(1982-), 女, 副教授, 从事异种材料连接研究工作, 联系地址:山东省威海市文化西路2号材料学院(264200), E-mail: liuduo0376@163.com
引用本文:   
刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
Duo LIU, Jing-he LIU, Ying-hao ZHOU, Xiao-guo SONG, Hong-wei NIU, Ji-cai FENG. Research on Residual Stress in Copper/Al2O3 Ceramic/Stainless Steel Composite Structure Brazed Joint. Journal of Materials Engineering, 2018, 46(3): 61-66.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000484      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/61
Al2O3 SiO2 Fe2O CaO MgO BaO
>99.08 0.10 0.13 0.10 0.10 0.26
Table 1  Al2O3陶瓷的化学成分(质量分数/%)
Cu Bi Sb As Fe S
>99.5 0.001 0.002 0.002 0.005 0.005
Table 2  T2紫铜的化学成分(质量分数/%)
Fe C Mn P S Si Cr Ni
Bal 0.08 2 0.045 0.03 1 18-20 8-11
Table 3  304不锈钢的化学成分(质量分数/%)
Material Linear expansion coefficient/(10-6K-1) Yield strength/MPa
Al2O3 10.0 -
T2 copper 17.7 67
304 stainless steel 16.0 206
AgCuTi filler 19.0 230
Table 4  母材的力学性能
Fig.1  钎焊试样装配示意图
Fig.2  钎焊试样三维有限元网格
Fig.3  试样钎焊后的形变分布
Fig.4  接头区等效应力分布图
Fig.5  陶瓷端沿轴向残余应力分布曲线
Fig.6  金属端沿轴向等效应力分布曲线
Fig.7  钎缝区沿轴向等效应力分布曲线
Fig.8  X-Y截面上沿径向应力分布曲线
Fig.9  紫铜/Al2O3陶瓷/不锈钢钎焊接头的SEM图
(a)Al2O3陶瓷/不锈钢界面; (b)紫铜/Al2O3陶瓷界面;(c)钎料/Al2O3陶瓷界面
Fig.10  实际钎焊试样的断裂位置
1 李卓然, 顾伟, 冯吉才. 陶瓷与金属连接的研究现状[J]. 焊接, 2008, (3): 55- 60.
1 LI Z R , GU W , FENG J C . The research status on connection between ceramic and metal[J]. Welding & Joining, 2008, (3): 55- 60.
2 BOBZIZ K , SCHLAEFER T , ZHAO L , et al. Brazing of ceramic-to-ceramic and ceramic-to-metal joints in air[J]. Frontiers of Mechanical Engineering in China, 2010, 5 (2): 125- 129.
doi: 10.1007/s11465-010-0007-z
3 陈维平, 韩孟岩, 杨少锋. Al2O3陶瓷复合材料的研究进展[J]. 材料工程, 2011, (3): 91- 96.
3 CHEN W P , HAN M Y , YANG S F . Research progress of Al2O3 ceramic composites[J]. Journal of Materials Engineering, 2011, (3): 91- 96.
4 王玲玲, 丁毅, 马立群. 金属和陶瓷的钎焊技术及新发展[J]. 焊接技术, 2007, 36 (5): 1- 3.
4 WANG L L , DING Y , MA L Q . The brazing technology and development between metal and ceramic[J]. Welding Technology, 2007, 36 (5): 1- 3.
5 唐群, 楚建新, 张晓勇. 陶瓷-金属连接中的残余应[J]. 电子工艺技术, 2001, 22 (4): 166- 170.
5 TANG Q , CHU J X , ZHANG X Y . The residential stress on connection between ceramic and metal[J]. Electronics Process Technology, 2001, 22 (4): 166- 170.
6 ZHANG J , JIN L Y . Numerical simulation of residual stress in brazing joint between cemented carbide and steel[J]. Materials Science and Technology, 2005, 21 (12): 1455- 1459.
doi: 10.1179/174328405X71585
7 韩飞, 雷永平, 夏志东, 等. 陶瓷金属钎焊接头优化与残余应力数值模拟[J]. 焊接, 2008, (6): 26- 30.
7 HAN F , LEI Y P , XIA Z D , et al. The optimization and numerical simulation of residual stress on ceramic/metal brazed joints[J]. Welding & Joining, 2008, (6): 26- 30.
8 熊华平, 吴世彪, 陈波, 等. 缓解陶瓷/金属连接接头残余热应力的方法研究进展[J]. 焊接学报, 2013, 34 (9): 107- 112.
8 XIONG H P , WU S B , CHEN B , et al. The process in relieving the residual thermal stress of the ceramic/metal joints[J]. Welding Journal, 2013, 34 (9): 107- 112.
9 HE Y M , ZHANG J , PAN F , et al. Uncovering the critical factor in determining the residual stresses level in Si3N4-GM filler alloy-42CrMo joints by FEM analysis and experiments[J]. Ceramics International, 2013, 39 (1): 709- 718.
doi: 10.1016/j.ceramint.2012.06.082
10 雷永平, 韩丰娟, 夏志东, 等. 陶瓷-金属钎焊接头残余应力的数值分析[J]. 焊接学报, 2003, 24 (5): 33- 36.
10 LEI Y P , HAN F J , XIA Z D , et al. The numerical analysis of residual stress in ceramic/metal/brazed joint[J]. Transactions of the China Welding Institution, 2003, 24 (5): 33- 36.
11 XU S G , WANG S K , ZHAO Y L , et al. The residual stress in a brazed joint of metallic bipolar plates of PEMFC:a numerical model[J]. International Journal of Hydrogen Energy, 2016, 41 (10): 5304- 5314.
doi: 10.1016/j.ijhydene.2016.01.128
12 PAN R , KOVACEVIC S , LIN T , et al. Control of residual stresses in 2Si-B-3C-N and Nb joints by the Ag-Cu-Ti+Mo composite interlayer[J]. Materials & Design, 2016, 99, 193- 200.
13 王颖, 何鹏, 冯吉才, 等. 接头形式对陶瓷/金属连接残余应力的影响[J]. 焊接学报, 2007, 28 (4): 13- 16.
13 WANG Y , HE P , FENG J C , et al. Effect of joint types on residual stress in ceramic-metal joint[J]. Transactions of the China Welding Institution, 2007, 28 (4): 13- 16.
14 李洪亮. 紫铜与SiO2陶瓷真空钎焊工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
14 LI H L. The research on brazing technology of copper to SiO2 ceramic[D]. Harbin: Harbin Institute of Technology, 2014.
15 JIANG W C , GONG J M , CHEN H , et al. Finite element analysis of the effect of brazed residual stress on creep for stainless steel plate-fin structure[J]. Journal of Pressure Vessel Technology, 2008, 130 (4): 41203.
doi: 10.1115/1.2967807
16 董辉跃, 柯映林. 残余应力对加工变形影响的分析与模拟[J]. 航空材料学报, 2005, 25 (5): 54- 58.
16 DONG H Y , KE Y L . Analysis and simulation of machining deformation resulting from residual stress[J]. Journal of Aeronautical Materials, 2005, 25 (5): 54- 58.
[1] 杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
[2] 戎易, 李海涛, 熊震宇, 程东海, 陈益平, 胡德安, 王德, 刘钊泽, 李文杰. 镁合金/钢异种材料激光熔钎焊接头组织及成形调控[J]. 材料工程, 2022, 50(5): 166-171.
[3] 相宁, 葛勇, 张晓雯, 王博伦, 郑梦瑶, 颜悦. 熔体温度对注射成型热塑性聚氨酯制件残余应力及外形精度的影响[J]. 材料工程, 2022, 50(3): 148-156.
[4] 张鹏举, 陈静青, 杨霄. 16MnR钢激光冲击工艺及对焊接结构应力腐蚀性能的影响[J]. 材料工程, 2022, 50(11): 145-154.
[5] 李红, 韩祎, 曹健, MARIUSZBober, JACEKSenkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
[6] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[7] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[8] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[9] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[10] 刘敬勇, 卢磊, 钟政烨. 高应变速率下等径角挤压高纯粗晶铝中的形变孪晶与退火孪晶[J]. 材料工程, 2021, 49(4): 89-94.
[11] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[12] 相宁, 张晓雯, 葛勇, 丁尧, 郑梦瑶, 颜悦. 注射成型热塑性聚氨酯制件的取向形态演变和力学性能[J]. 材料工程, 2021, 49(12): 156-163.
[13] 蔡颖军, 王刚, 檀财旺, 王秒, 赵禹. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72-81.
[14] 李虎, 范王腾飞, 王敏涓, 黄旭, 黄浩. SiCf/TC17复合材料界面剪切强度测试与有限元分析[J]. 材料工程, 2021, 49(1): 160-167.
[15] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn