Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (12): 117-123    DOI: 10.11868/j.issn.1001-4381.2016.000570
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氩气雾化Ti-48Al合金液滴的快速冷却和凝固组织
鲍颖1,2, 骆琳1, 俞泽民1, 杨冬野2, 刘娜3, 张国庆3, 孙剑飞2
1. 哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150080;
2. 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001;
3. 中国航发北京航空材料研究院 先进高温结构材料重点实验室, 北京 100095
Rapid Cooling and Solidification Microstructure of Argon Atomized Ti-48Al Alloy Droplets
BAO Ying1,2, LUO Lin1, YU Ze-min1, YANG Dong-ye2, LIU Na3, ZHANG Guo-qing3, SUN Jian-fei2
1. School of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150080, China;
2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
3. Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(51461 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为研究氩气雾化过程中Ti-48Al(原子分数/%)合金液滴的形核和晶粒生长形式,分析液滴冷却过程的温度变化。采用扫描电子显微镜、透射电子显微镜和电子背散射衍射观察粉末的组织形貌,并基于观察建立了初始形核数量、固/液界面速率、冷却速率和液滴直径之间的牛顿冷却模型。结果表明:随着粉末尺寸的增加,初始形核数量呈指数增加,晶核生长时固/液界面从双曲面形式转变为同心圆形式;利用模型数值计算发现,雾化液滴纯液相急剧冷却,冷却速率约为105~106K·s-1。液滴进入再辉阶段后,温度快速上升后平缓下降,固相冷却阶段冷却速率约为105K·s-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍颖
骆琳
俞泽民
杨冬野
刘娜
张国庆
孙剑飞
关键词 钛铝合金气雾化快速凝固微观组织形核冷却速率    
Abstract:An analytical approach was developed to investigate nucleation and growth of Ti-48Al (atom fraction/%) alloy droplets during their flight in an argon atomization process. Evolution of microstructure of the solidified powders was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron back-scatter diffraction (EBSD). Newton cooling model based on the initial number of nuclei, liquid/solid interface velocity, cooling rate and size of droplets was established. The results show that statistical nucleation events increase exponentially with the increase of powders size, and the growth of nuclei is transformed from a twinned spherical segment into a concentric liquid/solid interface geometry. Temperature of atomized droplets decreases rapidly with the cooling rate of 105-106K·s-1.Then temperature increases sharply to near the liquidus temperature during recalescence. When the recalescence is completed, the droplet solidifies at a relatively slower rate. Afterwards the cooling rate of the fully solid phase decreases to about 105K·s-1.
Key wordsTiAl alloy    gas atomization    rapid solidification    microstructure    nucleation    cooling rate
收稿日期: 2016-05-16      出版日期: 2018-12-18
中图分类号:  TF123  
通讯作者: 孙剑飞(1962-),男,博士,教授,研究方向:非平衡凝固,联系地址:黑龙江省哈尔滨市南岗区西大直街92号哈尔滨工业大学材料与工程学院金属精密热加工国家级重点实验室612室(150001),E-mail:jfsun@hit.edu.cn     E-mail: jfsun@hit.edu.cn
引用本文:   
鲍颖, 骆琳, 俞泽民, 杨冬野, 刘娜, 张国庆, 孙剑飞. 氩气雾化Ti-48Al合金液滴的快速冷却和凝固组织[J]. 材料工程, 2018, 46(12): 117-123.
BAO Ying, LUO Lin, YU Ze-min, YANG Dong-ye, LIU Na, ZHANG Guo-qing, SUN Jian-fei. Rapid Cooling and Solidification Microstructure of Argon Atomized Ti-48Al Alloy Droplets. Journal of Materials Engineering, 2018, 46(12): 117-123.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000570      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/117
[1] KIM Y W. Strength and ductility in TiAl alloys[J]. Intermetallics, 1998, 6(7/8):623-628.
[2] 王艳晶,柳乐,宋玫锦. Y微合金化高铌TiAl基合金微观组织研究[J]. 材料工程, 2015,43(1):66-71. WANG Y J, LIU L, SONG M J. Microstructure of Y micro-alloying TiAl based alloy with high Nb content[J]. Journal of Materials Engineering,2015,43(1):66-71.
[3] RAO K P, PRASAD Y, SURESH K. Hot working behavior and processing map of a γ-TiAl alloy synthesized by powder metallurgy[J]. Materials & Design,2011,32(10):4874-4881.
[4] 马李,何录菊,邵先亦,等. 电子束沉积TiAl合金的微观形貌及组织结构稳定性[J]. 材料工程, 2016, 44(1):89-95. MA L,HE L J,SHAO X Y,et al. Micro-morphology and microstructure stability of TiAl alloy deposited by electronic beam[J]. Journal of Materials Engineering,2016,44(1):89-95.
[5] 阚文斌,林均品. 增材制造技术制备钛铝合金的研究进展[J]. 中国材料进展, 2015, 34(2):111-119. KAN W B,LIN J P. Research progress on fabrication of TiAl alloys fabricated by additive manufacturing[J]. Materials China,2015, 34(2):111-119.
[6] 刘咏,黄伯云,贺跃辉,等. 热压反应合成TiAl合金的密度及孔隙分布[J]. 中南工业大学学报, 1998, 29(5):446-449. LIU Y, HUANG B Y, HE Y H, et al. Densification and porosity distribution of TiAl based alloy prepared by reactive hot pressing[J]. Journal of Central South University, 1998, 29(5):446-449.
[7] SUN J F, CAO F Y, CUI C C, et al. Dynamic behaviors of gas velocity field during metal atomization[J]. Powder Metallurgy Technology, 2002, 20(2):79-81.
[8] MATHUR P,APELIAN D,LAWLEY A. Analysis of the spray deposition process[J]. Acta Metallurgica,1989, 37(2):429-433.
[9] GRANT P S,CANTOR B,KATGERMAN L. Modelling of droplet dynamic and thermal histories during spray forming-Ⅰ individual droplet behaviour[J]. Acta Metallurgica et Materialia,1993,41(11):3097-3108.
[10] LEVI C G, MEHRABIAN R. Heat flow during rapid solidification of undercooled metal droplets[J]. Metallurgical and Materials Transactions A,1982,13(2):221-234.
[11] TRIVEDI R,JIN F,ANDERSON I E. Dynamical evolution of microstructure in finely atomized droplets of Al-Si alloys[J]. Acta Materialia,2003,51(2):289-300.
[12] JABBAR H, MONCHOUX J P, THOMAS M, et al. Improvement of the creep properties of TiAl alloys densified by spark plasma sintering[J]. Intermetallics,2014,46(1):1-3.
[13] SUN Y,KULKARNI K,SACHDEV A K,et al. Synthesis of γ-TiAl by reactive spark plasma sintering of cryomilled Ti and Al powder blend:part Ⅱ:effects of electric field and microstructure on sintering kinetics[J].Metallurgical and Materials Transactions A,2014,45(6):2759-2767.
[14] LEVI C G, MEHRABIAN R. Microstructures of rapidly solidified aluminum alloy submicron powders[J]. Metallurgical and Materials Transactions A,1982,13(1):13-23.
[15] AISSA A,ABDELOUAHAB M,NOUREDDINE A,et al. Ranz and Marshall correlations limits on heat flow between a sphere and its surrounding gas at high temperature[J]. Thermal Science,2015,19(5):1521-1528.
[16] RANZ W E, MARSHALL W R J. Evaporation from drops:part Ⅰ[J]. Chemical Engineering Progress,1952,48(3):141-146.
[17] LEE E S, AHN S. Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming[J]. Acta Metallurgica et Materialia,1994,42(9):3231-3243.
[18] SHUKLA P,MANDAL R K,OJHA S N.Non-equilibrium solidification of undercooled droplets during atomization process[J]. Bulletin of Materials Science,2001,24(5):547-554.
[19] MARASLI N,HUNT J D. Solid-liquid surface energies in the Al-CuAl2,Al-NiAl3 and Al-Ti systems[J]. Acta Materialia,1996,44(3):1085-1096.
[20] HARDING R A,BROOKS R F,POTTACHER G,et al. Thermo-physical properties of a Ti-44Al-8Nb-1B alloy in the solid and molten conditions[C]//Gamma Titanium Aluminides 2003.Warrendale,US:The Minerals,Metals & Materials Society, 2003:75-82.
[21] LI B, LIANG X, EARTHMAN J C, et al. Two dimensional modeling of momentum and thermal behavior during spray atomization of γ-TiAl[J]. Acta Materialia,1996,44(6):2409-2420.
[22] FRANZEN S F, KARLSSON J. γ-titanium aluminide manufactured by electron beam melting[D]. Chalmers,Sweden:Chalmers University of Technology, 2010.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[3] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[4] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[5] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[6] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[9] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[10] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[11] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
[12] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[13] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[14] 李子夫, 邓运来, 张臻, 孙琳, 张议丹, 孙泉. 挤压比对Al-0.68Mg-0.60Si合金组织和性能的影响[J]. 材料工程, 2019, 47(10): 60-67.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn