Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 88-92    DOI: 10.11868/j.issn.1001-4381.2016.000593
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯介电电泳组装及电学特性
安立宝1, 李文1, 常春蕊2
1. 华北理工大学 机械工程学院, 河北 唐山 063009;
2. 华北理工大学 理学院, 河北 唐山 063009
Dielectrophoretic Assembly of Graphene and Electrical Characterization
AN Li-bao1, LI Wen1, CHANG Chun-rui2
1. College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China;
2. College of Sciences, North China University of Science and Technology, Tangshan 063009, Hebei, China
全文: PDF(1075 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 将石墨烯有效地集成到微纳器件上实现组装是石墨烯得以应用的重要先决条件。采用介电电泳法对二维纳米材料石墨烯进行组装,研究介电电泳组装过程参数包括外加交变电压幅值、石墨烯悬浮液浓度和外加电场作用时间对组装的影响。结果表明:组装到电极之间的石墨烯数量随着上述组装参数值的增大而增加,其中石墨烯悬浮液浓度的影响最为显著。组装后石墨烯的I-V特性曲线呈现良好的直线性,依据组装石墨烯数量的不同,电阻在数kΩ到数百kΩ之间,表明石墨烯与金属电极之间具有较高的接触电阻。采用局部焦耳热法可以有效地降低石墨烯的接触电阻,在电压幅值为3.6V时,降阻效果最优,电阻下降幅度为47.91%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安立宝
李文
常春蕊
关键词 石墨烯介电电泳组装参数I-V特性接触电阻局部焦耳热    
Abstract:Integrating graphene into micro-and nano-devices is a critical step for its application in many fields. Graphene-a type of two-dimensional nanomaterials was assembled by dielectrophoresis(DEP) and the influence of the DEP process parameters including the magnitude of the applied voltage, the concentration of the graphene suspension, and the duration of the electric field was investigated. Results show that the quantity of the assembled graphene increases with increasing these parameter values, and the concentration of the graphene suspension is the most significant factor. I-V curve of the assembled graphene presents a good linearity and the electrical resistance of the samples ranges from several kΩ to several hundred kΩ, depending on the quantity of the assembled graphene. This indicates that there exists a high contact resistance between graphene and metal electrodes. The contact resistance of graphene can be reduced efficiently by local joule heating, and the contact resistance is reduced at its most by 47.91% when the applied voltage is 3.6V.
Key wordsgraphene    dielectrophoresis    assembly parameter    I-V characteristics    contact resistance    local joule heating
收稿日期: 2016-05-16      出版日期: 2017-12-19
中图分类号:  TN4  
通讯作者: 安立宝(1965-),男,教授,博士,研究方向为微纳制造技术、先进纳米材料特性及应用,联系地址:河北省唐山市新华西道46号华北理工大学机械工程学院(063009),E-mail:lan@ncst.edu.cn.     E-mail: lan@ncst.edu.cn
引用本文:   
安立宝, 李文, 常春蕊. 石墨烯介电电泳组装及电学特性[J]. 材料工程, 2017, 45(12): 88-92.
AN Li-bao, LI Wen, CHANG Chun-rui. Dielectrophoretic Assembly of Graphene and Electrical Characterization. Journal of Materials Engineering, 2017, 45(12): 88-92.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000593      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/88
[1] SMIRNOV V A, VASIL'EV V P, DENISOV N N, et al. Electric behavior of interlayer water in graphene oxide films[J]. Chemical Physics Letters, 2016, 648:87-90.
[2] 于美, 李新杰, 马玉骁, 等. 石墨烯基复合超级电容器材料研究进展[J]. 材料工程, 2016, 44(5):101-111. YU M, LI X J, MA Y X, et al. Progress in research on graphene-based composite supercapacitor materials[J]. Journal of Materials Engineering, 2016, 44(5):101-111.
[3] YAN X H, WU R, XU J B, et al. A monolayer graphene-Nafion sandwich membrane for direct methanol fuel cells[J]. Journal of Power Sources, 2016, 311:188-194.
[4] YANG W, NI M, REN X, et al. Graphene in supercapacitor applications[J]. Current Opinion in Colloid and Interface Science, 2015, 20(5/6):416-428.
[5] ZHANG Y, LIU L, XI N, et al. Dielectrophoretic assembly and atomic force microscopy modification of reduced graphene oxide[J]. Journal of Applied Physics, 2011, 110(11):114515.
[6] AN L B, FRIEDRICH C R. Measurement of contact resistance of multiwall carbon nanotubes by electrical contact using a focused ion beam[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2012, 272:169-172.
[7] McCANNA J P, SONNENBERG A, HELLER M J. Low level epifluorescent detection of nanoparticles and DNA on dielectrophoretic microarrays[J]. Journal of Biophotonics, 2014, 7(11/12):863-873.
[8] CHEN L, ZHENG X L, HU N, et al. Research progress on microfluidic chip of cell separation based on dielectrophoresis[J]. Chinese Journal of Analytical Chemistry, 2015, 43(2):300-309.
[9] AN L B, FRIEDRICH C R. Dielectrophoretic assembly of carbon nanotubes and stability analysis[J]. Progress in Natural Science:Materials International, 2013, 23(4):367-373.
[10] 王小冲, 安立宝, 龚亮, 等. 碳纳米管受介电泳作用三维运动仿真研究[J]. 西安电子科技大学学报(自然科学版), 2016, 43(4):154-159. WANG X C, AN L B, GONG L, et al. Three-dimensional simulation of kinetics of carbon nanotubes under dielectrophoresis[J]. Journal of Xidian University(Natural Science), 2016, 43(4):154-159.
[11] VIJAYARAGHAVAN A, SCIASCIA C, DEHM S, et al. Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening[J]. ACS Nano, 2009, 3(7):1729-1734.
[12] BURG B R, SCHNEIDER J, MAURER S, et al. Dielectrophoretic integration of single-and few-layer graphenes[J]. Journal of Applied Physics, 2010, 107(3):034302.
[13] VIJAYARAGHAVAN A. Bottom-up assembly of nano-carbon devices by dielectrophoresis[J]. Physica Status Solidi B, 2013, 250(12):2505-2517.
[14] AN L B, CHEAM D D, FRIEDRICH C R. Controlled dielectrophoretic assembly of multiwalled carbon nanotubes[J]. The Journal of Physical Chemistry C, 2008, 113(1):37-39.
[15] AN L B, FRIEDRICH C R. Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes[J]. Journal of Applied Physics, 2009, 105(7):074314.
[16] PATHANGI H, GROESENEKEN G, WITVROUW A. Dielectrophoretic assembly of suspended single-walled carbon nanotubes[J]. Microelectronic Engineering, 2012, 98:218-221.
[17] AN L B, YANG X, CHANG C R. On contact resistance of carbon nanotubes[J]. International Journal of Theoretical and Applied Nanotechnology, 2013, 1(2):30-40.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[3] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[4] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[5] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[6] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[7] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[8] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[9] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[10] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[11] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[12] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[13] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[14] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[15] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn