Tensile and Compress Property of Composite Laminate in Hygrothermal Environment
Liang XU1,*(), Bing-qiang FEI1, Shao-hua MA1, Li HUI1,2, Guo-dong HUANG1
1 School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China 2 Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
The tensile and compressive tests on woven carbon fiber epoxy resin composite specimens in different hygrothermal environments were carried out. The moisture absorption, tensile and compressive properties, fracture morphology and dynamic mechanical properties were analyzed. The influence of hygrothermal environments on tensile and compressive properties was investigated. The results show that the absorption process of carbon fiber epoxy composites satisfies Fick's law, and its saturated moisture absorption rate is about 0.86%. After moisture absorption, the surface of specimens becomes smooth, the phenomenon of few fibers pull-out and resin damage occurs, but no chemical reaction and no new substances is generated. After moisture absorption at 130℃, the retention rate of tensile properties is 96%, but the retention rate of compression properties is only 69%. The glass transition temperature of composite laminates after moisture absorption decreases by 33℃ compared with that in dry state.
ZHANG A Y , ZHANG D X , LI D H , et al. Advances of study on fatigue properties of carbon fiber reinforced epoxy laminates[J]. Fiber Reinforced Plastics/Composites, 2010, (6): 70- 74.
2
REZAEI F , YUNUS R , IBRAHIM N A . Effect of fiber length on thermo-mechanical properties of short carbon fiber reinforced polypropylene composites[J]. Materials & Design, 2009, 30 (2): 260- 263.
3
SANTIUSTE C , SANCHEZ-SAEZ S , BARBERO E . Residual flexural strength after low velocity impact in glass/polyester composite beams[J]. Composite Structures, 2010, 92 (21): 25- 30.
CAI D A , ZHOU G M , WANG X F , et al. Mechanical behavior of bidirectional glass fiber fabric composites subjected to biaxial tensile loading[J]. Journal of Materials Engineering, 2014, (5): 73- 77.
doi: 10.11868/j.issn.1001-4381.2014.05.013
HUI L , WANG Y G , XU L , et al. Moisture absorption model of composites considering water temperature effect[J]. Journal of Materials Engineering, 2016, 44 (11): 83- 87.
doi: 10.11868/j.issn.1001-4381.2016.11.014
ZHANG X Y , CAO D , LU F , et al. Aging behavior of T700/5224 composite in hygrothermal environment and chemical media[J]. Journal of Materials Engineering, 2016, 44 (4): 82- 88.
doi: 10.11868/j.issn.1001-4381.2016.04.014
FENG Y , HE Y T , AN T , et al. Influence of hygrothermal environment on compressive buckling and post-buckling performance of aero composite stiffened panel[J]. Journal of Materials Engineering, 2015, 43 (5): 81- 88.
doi: 10.11868/j.issn.1001-4381.2015.05.014
LIU W D , CHEN J L , LI Y , et al. Surface state of domestic 800-grade carbon fibers and interface property of composites[J]. Journal of Materials Engineering, 2016, 44 (10): 88- 93.
doi: 10.11868/j.issn.1001-4381.2016.10.013
MA S H , WANG Y G , HUI L , et al. Influence of hygrothermal environment on flexural property of carbon fiber epoxy composite[J]. Journal of Materials Engineering, 2016, 44 (2): 81- 87.
doi: 10.11868/j.issn.1001-4381.2016.02.013
10
REZGANI L , BOUIADJRA B B , BELHOUAR M , et al. Effect of composite hygrothermal aging on the SIF variation in bonded composite repair of aircraft structures[J]. Journal of Reinforced Plastics and Composites, 2010, 29 (16): 3631- 3636.
ZHAN Q W , FAN X L , SUN Q , et al. Effects of hygrothermal environment on static properties of laminated composites with a circular open hole[J]. Journal of Solid Rocket Technology, 2011, 34 (6): 764- 767.
LIU J H , CAO D , ZHANG X Y , et al. Influence of hygrothermal environment on absorption and mechanical properties of advanced composite T300/5405[J]. Journal of Aeronautical Materials, 2010, 30 (4): 75- 80.
LU Z X , FENG Z H . Studies on tensile properties of braided structural composite materials[J]. Acta Materiae Compositae Sinica, 1999, 16 (3): 129- 134.
14
COSTA M L , REZENDE M C , ALMEIDA S F M . Strength of hygrothermally conditioned polymer composites with voids[J]. Journal of Composite Materials, 2005, 39 (21): 1943- 1961.
doi: 10.1177/0021998305051807
15
MOHAN J , IVANKOVI C' A , MURPHY N . Effect of prepreg storage humidity on the mixed-mode fracture toughness of a co-cured composite joint[J]. Composites Part A, 2013, 45, 23- 34.
doi: 10.1016/j.compositesa.2012.09.010
ZHANG L J , ZHAO Y , LUO Y F , et al. On the interfacial properties of CCF300/QY8911 composite with cyclical hygrothermal treatments[J]. Journal of Materials Engineering, 2012, (2): 25- 29.
FAN J J , CHENG X Q , TAO C H . Failure analysis basics for polymer matrix composite components[M]. Beijing: National Defence Industry Press, 2011: 115- 143.
18
陈平, 刘胜平. 环氧树脂[M]. 北京: 化学工业出社, 1999: 176- 184.
18
CHEN P , LIU S P . Epoxy resin[M]. Beijing: Chemical Industry Press, 1999: 176- 184.