Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (3): 124-130    DOI: 10.11868/j.issn.1001-4381.2016.000632
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
湿热环境下复合材料层板拉-压性能
许良1,*(), 费昺强1, 马少华1, 回丽1,2, 黄国栋1
1 沈阳航空航天大学 机电工程学院, 沈阳 110136
2 沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室, 沈阳 110136
Tensile and Compress Property of Composite Laminate in Hygrothermal Environment
Liang XU1,*(), Bing-qiang FEI1, Shao-hua MA1, Li HUI1,2, Guo-dong HUANG1
1 School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
全文: PDF(5440 KB)   HTML ( 31 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

通过对碳纤维环氧复合材料试样进行不同湿热环境下的拉伸和压缩实验,分析其吸湿特性、拉压力学性能、破坏后断口形貌以及动态力学性能,探讨湿热对该复合材料的拉伸和压缩性能的影响。结果表明:碳纤维环氧复合材料的吸湿过程满足Fick定律,饱和吸湿率约为0.86%。吸湿后材料表面变得光滑,有少量纤维拔出和树脂破坏发生,但吸湿后没有发生化学反应和新物质生成。吸湿后在130℃下,复合材料的拉伸性能保持率为96%,而压缩性能保持率仅为69%。吸湿后玻璃化转变温度比干态时下降了33℃。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许良
费昺强
马少华
回丽
黄国栋
关键词 碳纤维环氧复合材料湿热环境拉伸和压缩强度吸湿量破坏模式动态力学性能    
Abstract

The tensile and compressive tests on woven carbon fiber epoxy resin composite specimens in different hygrothermal environments were carried out. The moisture absorption, tensile and compressive properties, fracture morphology and dynamic mechanical properties were analyzed. The influence of hygrothermal environments on tensile and compressive properties was investigated. The results show that the absorption process of carbon fiber epoxy composites satisfies Fick's law, and its saturated moisture absorption rate is about 0.86%. After moisture absorption, the surface of specimens becomes smooth, the phenomenon of few fibers pull-out and resin damage occurs, but no chemical reaction and no new substances is generated. After moisture absorption at 130℃, the retention rate of tensile properties is 96%, but the retention rate of compression properties is only 69%. The glass transition temperature of composite laminates after moisture absorption decreases by 33℃ compared with that in dry state.

Key wordscarbon fiber epoxy resin composite    hygrothermal environment    tensile and compress stren-gth    moisture absorption    failure mode    dynamic mechanical property
收稿日期: 2016-05-23      出版日期: 2018-03-20
中图分类号:  TB332  
基金资助:辽宁省教育厅项目资助(L201611)
通讯作者: 许良     E-mail: simxu@126.com
作者简介: 许良(1965-), 男, 博士, 副教授, 主要从事航空材料与结构强度方面的研究, 联系地址:辽宁省沈阳市道义南大街37号沈阳航空航天大学机电工程学院(110136), E-mail:simxu@126.com
引用本文:   
许良, 费昺强, 马少华, 回丽, 黄国栋. 湿热环境下复合材料层板拉-压性能[J]. 材料工程, 2018, 46(3): 124-130.
Liang XU, Bing-qiang FEI, Shao-hua MA, Li HUI, Guo-dong HUANG. Tensile and Compress Property of Composite Laminate in Hygrothermal Environment. Journal of Materials Engineering, 2018, 46(3): 124-130.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000632      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/124
Fig.1  拉伸试样(a)和压缩试样(b)尺寸图
Fig.2  复合材料的吸湿率曲线
Fig.3  复合材料的表面形貌
(a)干态;(b)湿态;(1)低倍;(2)高倍
Fig.4  复合材料的FTIR光谱图
(a)干态; (b)湿态
Fig.5  强度和温度的关系
(a)拉伸强度;(b)压缩强度
Fig.6  不同温度下干态和湿态的拉伸(1)和压缩(2)断口形貌(a)23℃干态; (b)90℃湿态; (c)130℃湿态
Fig.7  干态(a)和湿态(b)的DMA曲线
Fig.8  干态和湿态断口的微观形貌
(a)23℃干态;(b)90℃湿态;(c)130℃湿态;(1)拉伸;(2)压缩
1 张阿樱, 张东兴, 李地红, 等. 碳纤维/环氧树脂层压板疲劳性能研究进展[J]. 玻璃钢/复合材料, 2010, (6): 70- 74.
1 ZHANG A Y , ZHANG D X , LI D H , et al. Advances of study on fatigue properties of carbon fiber reinforced epoxy laminates[J]. Fiber Reinforced Plastics/Composites, 2010, (6): 70- 74.
2 REZAEI F , YUNUS R , IBRAHIM N A . Effect of fiber length on thermo-mechanical properties of short carbon fiber reinforced polypropylene composites[J]. Materials & Design, 2009, 30 (2): 260- 263.
3 SANTIUSTE C , SANCHEZ-SAEZ S , BARBERO E . Residual flexural strength after low velocity impact in glass/polyester composite beams[J]. Composite Structures, 2010, 92 (21): 25- 30.
4 蔡登安, 周光明, 王新峰, 等. 双向玻纤织物复合材料双轴拉伸载荷下的力学行为[J]. 材料工程, 2014, (5): 73- 77.
doi: 10.11868/j.issn.1001-4381.2014.05.013
4 CAI D A , ZHOU G M , WANG X F , et al. Mechanical behavior of bidirectional glass fiber fabric composites subjected to biaxial tensile loading[J]. Journal of Materials Engineering, 2014, (5): 73- 77.
doi: 10.11868/j.issn.1001-4381.2014.05.013
5 回丽, 王勇刚, 许良, 等. 考虑水浸温度影响的复合材料吸湿动力学模型[J]. 材料工程, 2016, 44 (11): 83- 87.
doi: 10.11868/j.issn.1001-4381.2016.11.014
5 HUI L , WANG Y G , XU L , et al. Moisture absorption model of composites considering water temperature effect[J]. Journal of Materials Engineering, 2016, 44 (11): 83- 87.
doi: 10.11868/j.issn.1001-4381.2016.11.014
6 张晓云, 曹东, 陆峰, 等. T700/5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44 (4): 82- 88.
doi: 10.11868/j.issn.1001-4381.2016.04.014
6 ZHANG X Y , CAO D , LU F , et al. Aging behavior of T700/5224 composite in hygrothermal environment and chemical media[J]. Journal of Materials Engineering, 2016, 44 (4): 82- 88.
doi: 10.11868/j.issn.1001-4381.2016.04.014
7 冯宇, 何宇廷, 安涛, 等. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43 (5): 81- 88.
doi: 10.11868/j.issn.1001-4381.2015.05.014
7 FENG Y , HE Y T , AN T , et al. Influence of hygrothermal environment on compressive buckling and post-buckling performance of aero composite stiffened panel[J]. Journal of Materials Engineering, 2015, 43 (5): 81- 88.
doi: 10.11868/j.issn.1001-4381.2015.05.014
8 刘卫丹, 陈俊林, 李阳, 等. 国产800级碳纤维表面状态及其复合材料界面性能[J]. 材料工程, 2016, 44 (10): 88- 93.
doi: 10.11868/j.issn.1001-4381.2016.10.013
8 LIU W D , CHEN J L , LI Y , et al. Surface state of domestic 800-grade carbon fibers and interface property of composites[J]. Journal of Materials Engineering, 2016, 44 (10): 88- 93.
doi: 10.11868/j.issn.1001-4381.2016.10.013
9 马少华, 王勇刚, 回丽, 等. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44 (2): 81- 87.
doi: 10.11868/j.issn.1001-4381.2016.02.013
9 MA S H , WANG Y G , HUI L , et al. Influence of hygrothermal environment on flexural property of carbon fiber epoxy composite[J]. Journal of Materials Engineering, 2016, 44 (2): 81- 87.
doi: 10.11868/j.issn.1001-4381.2016.02.013
10 REZGANI L , BOUIADJRA B B , BELHOUAR M , et al. Effect of composite hygrothermal aging on the SIF variation in bonded composite repair of aircraft structures[J]. Journal of Reinforced Plastics and Composites, 2010, 29 (16): 3631- 3636.
11 展全伟, 范学领, 孙秦, 等. 复合材料孔板在湿热环境下的力学性能研究[J]. 固体火箭技术, 2011, 34 (6): 764- 767.
11 ZHAN Q W , FAN X L , SUN Q , et al. Effects of hygrothermal environment on static properties of laminated composites with a circular open hole[J]. Journal of Solid Rocket Technology, 2011, 34 (6): 764- 767.
12 刘建华, 曹东, 张晓云, 等. 树脂基复合材料T300/5405的吸湿性能及湿热环境对力学性能的影响[J]. 航空材料学报, 2010, 30 (4): 75- 80.
12 LIU J H , CAO D , ZHANG X Y , et al. Influence of hygrothermal environment on absorption and mechanical properties of advanced composite T300/5405[J]. Journal of Aeronautical Materials, 2010, 30 (4): 75- 80.
13 卢子兴, 冯志海. 编织复合材料拉伸力学性能的研究[J]. 复合材料学报, 1999, 16 (3): 129- 134.
13 LU Z X , FENG Z H . Studies on tensile properties of braided structural composite materials[J]. Acta Materiae Compositae Sinica, 1999, 16 (3): 129- 134.
14 COSTA M L , REZENDE M C , ALMEIDA S F M . Strength of hygrothermally conditioned polymer composites with voids[J]. Journal of Composite Materials, 2005, 39 (21): 1943- 1961.
doi: 10.1177/0021998305051807
15 MOHAN J , IVANKOVI C' A , MURPHY N . Effect of prepreg storage humidity on the mixed-mode fracture toughness of a co-cured composite joint[J]. Composites Part A, 2013, 45, 23- 34.
doi: 10.1016/j.compositesa.2012.09.010
16 张利军, 肇研, 罗云峰, 等. 湿热循环对CCF300/QY8911复合材料界面性能的影响[J]. 材料工程, 2012, (2): 25- 29.
16 ZHANG L J , ZHAO Y , LUO Y F , et al. On the interfacial properties of CCF300/QY8911 composite with cyclical hygrothermal treatments[J]. Journal of Materials Engineering, 2012, (2): 25- 29.
17 范金娟, 程小全, 陶春虎. 聚合物基复合材料构件失效分析基础[M]. 北京: 国防工业出版社, 2011: 115- 143.
17 FAN J J , CHENG X Q , TAO C H . Failure analysis basics for polymer matrix composite components[M]. Beijing: National Defence Industry Press, 2011: 115- 143.
18 陈平, 刘胜平. 环氧树脂[M]. 北京: 化学工业出社, 1999: 176- 184.
18 CHEN P , LIU S P . Epoxy resin[M]. Beijing: Chemical Industry Press, 1999: 176- 184.
19 包建文, 陈祥宝. 5284/T300复合材料湿热性能研究[J]. 宇航材料工艺, 2000, 30 (4): 37- 40.
19 BAO J W , CHEN X B . Study on hygrothermal properties of 5284/T300 composites[J]. Aerospace Materials & Technology, 2000, 30 (4): 37- 40.
[1] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[2] 刘文辉, 何圳涛, 唐昌平, 陈宇强. 变形条件对2519A铝合金动态力学性能与组织演化的影响[J]. 材料工程, 2016, 44(1): 47-53.
[3] 王婧, 任会兰, 郝莉, 宁建国. 多孔钛材料的动态力学响应研究[J]. 材料工程, 2015, 43(9): 87-93.
[4] 冯宇, 何宇廷, 安涛, 崔荣洪, 邵青, 范超华. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43(5): 81-88.
[5] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[6] 张胜男, 程兴旺. AerMet100超高强度钢的动态力学性能研究[J]. 材料工程, 2015, 43(12): 24-30.
[7] 郭霞, 关志东, 刘遂, 晏冬秀, 刘卫平, 孙凯. 修理工艺对边缘封闭蜂窝夹层结构弯曲性能的影响[J]. 材料工程, 2013, 0(12): 27-31.
[8] 刘海燕, 宋卫东, 栗建桥. 钨合金动态力学性能的三维数值模拟研究[J]. 材料工程, 2012, 0(6): 71-75.
[9] 郝敏, 黄艳华, 苏正涛, 王景鹤. 苯基硅橡胶的动态力学性能研究[J]. 材料工程, 2012, 0(10): 35-38,53.
[10] 江盛玲, 谷晓昱, 张志远. 聚苯硫醚/羟基改性多壁碳纳米管复合材料动态力学行为研究[J]. 材料工程, 2011, 0(6): 77-80.
[11] 孙颖, 王国军, 张典堂, 陈利, 张明. UHMWPE/乙烯基酯2.5D角联锁机织复合材料动态压缩性能实验研究[J]. 材料工程, 2011, 0(4): 38-42.
[12] 刘慧丛, 邢阳, 李卫平, 朱立群. 湿热贮存环境下电子器件表面镀层的腐蚀研究[J]. 材料工程, 2010, 0(2): 58-63.
[13] 陈磊, 徐志伟, 李嘉禄, 张刘飞, 陈利, 吴晓青, 孙颖, 陈光伟. 防弹复合材料结构及其防弹机理[J]. 材料工程, 2010, 0(11): 94-100.
[14] 姜芳, 陈涛, 宁建国. 钢筋混凝土在冲击载荷下的动态力学性能[J]. 材料工程, 2009, 0(3): 45-48,53.
[15] 李裕春, 程克明, 沈蔚, 刘强. 水中冲击波对混凝土结构破坏的实验研究[J]. 材料工程, 2008, 0(12): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn