Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (4): 74-81    DOI: 10.11868/j.issn.1001-4381.2016.000655
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为
杜娟1, 田辉1, 陈亚军1, 王付胜1, 陈翘楚1, 褚弘2
1. 中国民航大学, 天津 300300;
2. 天津渤海化工集团 有限责任公司, 天津 300450
Susceptibility to Stress Corrosion and Crack Initiation and Propagation of 7A04 Aluminum Alloys
DU Juan1, TIAN Hui1, CHEN Ya-jun1, WANG Fu-sheng1, CHEN Qiao-chu1, CHU Hong2
1. Civil Aviation University of China, Tianjin 300300, China;
2. Tianjin Bohai Chemical Industry Group Co., Ltd., Tianjin 300450, China
全文: PDF(6781 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用相移和电化学阻抗谱相结合的方法研究慢应变速率拉伸过程中7A04铝合金在pH=1,4,7,12的3.5% NaCl溶液中应力腐蚀裂纹的萌生和扩展规律,并利用电化学噪声法验证该方法的可行性。结果表明:溶液腐蚀性越强,7A04铝合金的应力腐蚀开裂敏感性越大;pH=1条件下,相移法测得裂纹在1h时开始萌生,在4.5h明显扩展,由电化学阻抗谱分析得到裂纹的萌生和扩展不是连续的,而是分阶段进行;电化学噪声法的测试结果为裂纹在3000~5000s时开始萌生,在13500~22500s扩展明显,伴随出现明显周期性的电流和电位噪声峰。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜娟
田辉
陈亚军
王付胜
陈翘楚
褚弘
关键词 铝合金应力腐蚀开裂电化学阻抗谱电化学噪声    
Abstract:The crack initiation and propagation of 7A04 aluminum alloy in 3.5%NaCl solution at pH=1,4,7,12 during slow strain rate test (SSRT) were investigated by the method of combining phase shift with electrochemical impedance spectroscopy. The feasibility of the method was verified by electrochemical noise (EN). The results show that the more corrosive the solution is, the susceptibility of the 7A04 aluminum alloy to stress corrosion cracking is greater;in the solution at pH=1,the phase shift method shows that crack initiates at 1h and propagates at 4.5h,and the electrochemical impedance spectroscopy in situ method shows the crack initiation and propagation are discontinuous,and in stages;the EN results show that the crack initiation occurs at a certain moment among 3000-5000s and propagates obviously at a certain moment among 13500-22500s accompanying with obvious periodical current and potential noise peaks.
Key wordsaluminum alloy    stress corrosion cracking    electrochemical impedance spectroscopy    electrochemical noise
收稿日期: 2016-05-29      出版日期: 2018-04-14
中图分类号:  TG146.2+1  
通讯作者: 杜娟(1981-),女,博士,讲师,主要从事航空铝合金应力腐蚀方面研究,联系地址:天津市东丽区中国民航大学北院中欧航空工程师学院北教24(300300),E-mail:781498373@qq.com     E-mail: 781498373@qq.com
引用本文:   
杜娟, 田辉, 陈亚军, 王付胜, 陈翘楚, 褚弘. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J]. 材料工程, 2018, 46(4): 74-81.
DU Juan, TIAN Hui, CHEN Ya-jun, WANG Fu-sheng, CHEN Qiao-chu, CHU Hong. Susceptibility to Stress Corrosion and Crack Initiation and Propagation of 7A04 Aluminum Alloys. Journal of Materials Engineering, 2018, 46(4): 74-81.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000655      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/74
[1] SOWARDS J W, WILLIAMSON C H D, WEEKS T S, et al. The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels[J]. Corrosion Science, 2014, 79:128-138.
[2] LO I H, TSAI W T. Effect of selective dissolution on fatigue crack initiation in 2205 duplex stainless steel[J]. Corrosion Science, 2007, 49(4):1847-1861.
[3] 闫辰光, 韩健, 张军利, 等. 有机硅涂层对聚碳酸酯透明件耐溶剂-应力开裂性能的影响[J].航空材料学报,2016,36(5):52-57. YAN C G, HAN J, ZHANG J L, et al. Effect of surface silicone coating on environmental stress cracking resistance of transparent polycarbonate parts[J]. Journal of Aeronautical Materials, 2016, 36(5):52-57.
[4] ZHAO W M, WANG Y X, ZHANG T M, et al. Study on the mechanism of high-cycle corrosion fatigue crack initiation in X80 steel[J]. Corrosion Science, 2012, 57(2):99-103.
[5] 王建亭, 周荣生, 王明杰, 等. 形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响[J].材料工程,2016,44(1):11-18. WANG J T, ZHOU R S, WANG M J, et al. Effect of deformation temperature on tensile deformation behavior of Fe-20Mn-3Cu-1.3C TWIP steel[J]. Journal of Materials Engineering, 2016, 44(1):11-18.
[6] 李文婷,潘若生,赵苇杭,等.AA7075铝合金应力腐蚀开裂过程中裂纹萌生和扩展的电化学噪声[J]. 中国有色金属学报, 2015, 25(12):3282-3292. LI W T, PAN R S, ZHAO W H, et al. Electrochemical noise of cracking initiation and propagation of AA7075 aluminum alloy during stress corrosion cracking[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(12):3282-3292.
[7] 生海,董超芳,杨志炜,等.2024-T351铝合金在酸性NaCl溶液中SCC行为的电化学噪声检测[J]. 科技导报,2012, 30(10):18-23. SHENG H, DONG C F, YANG Z W, et al. Electrochemical noise detection for SCC behavior for 2024-T351 aluminum alloy in acid NaCl solution[J]. Science and Technology Review, 2012, 30(10):18-23.
[8] SANCHEZ-AMAYA J M, COTTIS R A, BOTANA F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms[J]. Corrosion Science, 2005, 47(12):3280-3299.
[9] BREIMESSER M, RITTER S, SEIFERT H P, et al. Application of electrochemical noise to monitor stress corrosion cracking of stainless steel in tetrathionate solution under constant load[J]. Corrosion Science, 2012, 63:129-139.
[10] 刘远勇,张晓云,裴和中,等. 7B04铝合金应力腐蚀敏感性研究[J].材料工程,2010(2):33-36. LIU Y Y, ZHANG X Y, PEI H Z, et al. Research on the properties of stress corrosion crack for 7B04 alloy[J]. Journal of Materials Engineering, 2010(2):33-36.
[11] 程远,俞宏英,王莹,等. 应变速率对X80管线钢应力腐蚀的影响[J]. 材料工程,2013(3):77-82. CHENG Y, YU H Y, WANG Y, et al. Effect of strain rate on stress corrosion cracking of X80 pipeline steel[J]. Journal of Materials Engineering, 2013(3):77-82.
[12] MALARVIZHI S, BALASUBRAMANIAN V. Effects of welding processes and post-weld aging treatment on fatigue behavior of AA2219 aluminum alloy joints[J]. Journal of Materials Engineering and Performance, 2011, 20(3):359-367.
[13] LI H Z, WANG H J, LIANG X P, et al. Effect of Sc and Nd on the microstructure and mechanical properties of Al-Mg-Mn alloy[J]. Journal of Materials Engineering and Performance, 2012, 21(1):83-88.
[14] KAUFMANN J. Corrosion of aluminum and aluminum alloys[J]. Corrosion, 2005, 13:95-124.
[15] FOLEY R T. Localized corrosion of aluminum alloys-a review[J]. Corrosion, 1986, 42:277-286.
[16] GARCIA C, MARTIN F, De TIEDRA P, et al. Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels[J]. Corrosion Science, 2001, 43(8):1519-1539.
[17] ALMUBARAK A, BELKHARCHOUCHE M, HUSSAIN A. Stress corrosion cracking of sensitized austenitic stainless steels in Kuwait petroleum refineries[J]. Anti-Corrosion Methods and Materials, 2010, 57(2):58-64.
[18] DONELAN P. Modelling microstructural and mechanical properties of ferritic ductile cast iron[J]. Materials Science and Technology, 2000, 16(3):261-269.
[19] OSORIO W R, GARCIA A. Modeling dendritic structure and mechanical properties of Zn-Al alloys as a function of solidification conditions[J]. Materials Science and Engineering:A, 2002, 325(1/2):103-111.
[20] SANTOS G A, De NETO C M, OSORIO W R, et al. Design of mechanical properties of a Zn27Al alloy based on microstructure dendritic array spacing[J]. Materials & Design, 2007, 28(9):2425-2430.
[21] OSORIO W R, SPINELLI J E, FREIRE C M, et al. Experimental analysis of corrosion resistance on columnar to equiaxed transition region of as cast structures of Al-Cu alloys[J]. Materials Science and Technology, 2008, 24(12):1433-1437.
[22] PEIXOTO L C, OSORIO W R, GARCIA A. Microstructure and electrochemical corrosion behavior of a Pb-1% Sn alloy for lead-acid battery components[J]. Journal of Power Sources, 2009, 192(2):724-729.
[23] PEIXOTO L C, OSORIO W R, GARCIA A. The interrelation between mechanical properties, corrosion resistance and microstructure of PbSn casting alloys for lead-acid battery components[J]. Journal of Power Sources, 2010, 195(2):621-630.
[24] OSORIO W R, PEIXOTO L C, MOUTINHO D J, et al. Corrosion resistance of directionally solidified Al-6Cu-1Si and Al-8Cu-3Si alloys castings[J]. Materials & Design,2011,32(7):3832-3837.
[25] BOSCH R W. Electrochemical impedance spectroscopy for the detection of stress corrosion cracks in aqueous corrosion systems at ambient and high temperature[J]. Corrosion Science, 2005, 47(1):125-143.
[26] WELLS D B, STEWART J, DAVIDSON R, et al. The mechanism of intergranular stress corrosion cracking of sensitised austenitic stainless steel in dilute thiosulphate solution[J]. Corrosion Science, 1992, 33(1):39-71.
[27] LEBAN M, DOLECEK V, LEGAT A. Electrochemical noise during non-stationary corrosion processes[J]. Materials & Corrosion, 2001,52(6):418-425.
[28] RITTER S, SEIFERT H P. Detection of SCC initiation in austenitic stainless steel by electrochemical noise measurements[J]. Materials & Corrosion, 2013, 64(8):683-690.
[1] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[2] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[3] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[4] 李卫, 陈康华, 焦慧彬, 周亮, 杨振, 陈送义. 微量Ge对7056铝合金组织和淬火敏感性的影响[J]. 材料工程, 2019, 47(3): 123-130.
[5] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[6] 陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究[J]. 材料工程, 2019, 47(1): 97-105.
[7] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[8] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[9] 黄元春, 许天成, 肖政兵, 任贤魏, 贾广泽. 弥散相对3003铝合金再结晶晶粒尺寸的影响[J]. 材料工程, 2018, 46(6): 65-72.
[10] 徐勇, 靳鹏飞, 田亚强, 张士宏, 王礼良, 曾一畔. 铝合金局部热处理技术及其在板材成形中的应用发展现状[J]. 材料工程, 2018, 46(5): 44-55.
[11] 栗慧, 邹家生, 姚君山, 彭浩平. 2219高强铝合金活性TIG焊工艺[J]. 材料工程, 2018, 46(4): 66-73.
[12] 杨守杰, 邢清源, 于海军, 王玉灵, 戴圣龙. 800MPa级Al-Zn-Mg-Cu系合金[J]. 材料工程, 2018, 46(4): 82-90.
[13] 何培龙, 程方杰, 肖兵, 赵欢. 添加Ge元素对CsF-AlF3钎剂熔化特性、物相结构及铺展性能的影响[J]. 材料工程, 2018, 46(4): 99-103.
[14] 金玉花, 甘瑞根, 陈飞, 邵庆丰, 王希靖, 郭廷彪. 搅拌摩擦焊辅助Al/Zn/Mg接头扩散连接[J]. 材料工程, 2018, 46(3): 55-60.
[15] 吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn