Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (4): 1-8    DOI: 10.11868/j.issn.1001-4381.2016.000687
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响
张国君1, 武玉英1,*(), 杨化冰1, 刘桂亮2, 孙谦谦2, 刘相法1
1 山东大学 材料液固结构演变与加工教育部重点实验室,济南 250061
2 山东吕美熔体技术有限公司,济南 250061
Influence of Anti Zr-poisoning Al-Ti-B-C Master Alloy on Mechanical Properties of 7050 Aluminum Alloy
Guo-jun ZHANG1, Yu-ying WU1,*(), Hua-bing YANG1, Gui-liang LIU2, Qian-qian SUN2, Xiang-fa LIU1
1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
2 Shandong Al & Mg Melt Technology Company Limited, Jinan 250061, China
全文: PDF(4795 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

通过场发射扫描电子显微镜 (FESEM),X射线衍射仪 (XRD),能量色谱仪 (EDS) 分析Al-5Ti-1B,Al-4Ti-1C和Al-5Ti-0.8B-0.2C中间合金的微观组织与物相组成,比较研究3种中间合金对7050铝合金晶粒尺寸与力学性能的影响。结果表明:Zr的存在削弱了Al-5Ti-1B和Al-4Ti-1C中间合金的细化效果,而对Al-5Ti-0.8B-0.2C中间合金细化效果影响较小。含掺杂型TiC粒子的Al-5Ti-0.8B-0.2C中间合金具有较好的抗Zr“中毒”能力,加入量为0.2% (质量分数,下同) 时,含Zr7050铝合金平均晶粒尺寸由200 μm细化至 (60±5) μm,室温极限抗拉强度由405 MPa提高到515 MPa,提高了27.2%,伸长率由2.1%提高到4.1%。而加入0.2%的Al-5Ti-1B或Al-4Ti-1C中间合金时晶粒尺寸较粗大且分布不均匀,表现出明显的细化“中毒”。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张国君
武玉英
杨化冰
刘桂亮
孙谦谦
刘相法
关键词 7050铝合金晶粒细化Zr“中毒”Al-Ti-B-C中间合金力学性能    
Abstract

The microstructure and phase composition of Al-5Ti-1B, Al-4Ti-1C and Al-5Ti-0.8B-0.2C master alloys were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS), and the effects of the three kinds of master alloys on the grain size and mechanical properties of 7050 alloy were investigated. The results show that the existence of Zr reduces the grain refining effects of Al-5Ti-1B and Al-4Ti-1C master alloys, but hardly influences the refinement of Al-5Ti-0.8B-0.2C master alloy. The reason is that Al-5Ti-0.8B-0.2C containing B-doped TiC can resist Zr-poisoning, and after adding 0.2% (mass fraction) Al-5Ti-0.8B-0.2C, the average grain size of 7050 alloy is reduced from about 200μm to (60±5) μm, the ultimate tensile strength increases from 405 MPa to 515 MPa, increasing by 27.2%, and the elongation rate increases from 2.1% to 4.1%. However, after adding 0.2% Al-5Ti-1B and Al-4Ti-1C master alloys, the grain size is larger and the distribution is uneven, exhibiting obvious "refinement poisoning" phenomenon.

Key words7050 aluminum alloy    grain refinement    Zr-poisoning    Al-Ti-B-C master alloy    mechanical property
收稿日期: 2016-06-07      出版日期: 2017-04-17
中图分类号:  TG146.2  
基金资助:国家自然科学基金资助项目(51001065);山东大学青年学者未来计划项目(YSPSDU)
通讯作者: 武玉英     E-mail: wuyuying@sdu.edu.cn
作者简介: 武玉英 (1982-),女,博士,副教授,从事轻质合金细化及强韧化,联系地址:山东省济南市历下区经十路17923号山东大学千佛山校区 (250061),E-mail:wuyuying@sdu.edu.cn
引用本文:   
张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
Guo-jun ZHANG, Yu-ying WU, Hua-bing YANG, Gui-liang LIU, Qian-qian SUN, Xiang-fa LIU. Influence of Anti Zr-poisoning Al-Ti-B-C Master Alloy on Mechanical Properties of 7050 Aluminum Alloy. Journal of Materials Engineering, 2017, 45(4): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000687      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/1
No Mass fraction/%
Zn Mg Cu Zr Al
7# 6.0 2.0 2.0 0.0 Bal
7#-Zr 6.0 2.0 2.0 0.2 Bal
Table 1  7050铝合金名义成分
Fig.1  KBI环型模具示意图
Fig.2  不同中间合金的微观组织及能谱分析
(a) Al-Ti-B; (b) Al-Ti-C; (c), (d) Al-Ti-B-C; (e) 点A的EDS分析; (f) 点B的EDS分析
Fig.3  Al-Ti-B-C中间合金XRD的测试结果
Fig.4  Al-Ti-B-C中间合金中TiC粒子线扫描分析
Fig.5  不同中间合金细化7050铝合金保温5 min时微观组织
(a) 未添加中间合金; (b) 添加0.2% Al-Ti-B; (c) 添加0.2% Al-Ti-C; (d) 添加0.2% Al-Ti-B-C; (1) 7#; (2) 7#-Zr
Fig.6  不同中间合金细化后7050铝合金平均晶粒尺寸
Fig.7  不同中间合金对7050铝合金力学性能的影响
(a) 极限抗拉强度和硬度; (b) 伸长率
Fig.8  不同中间合金细化后7050铝合金晶粒尺寸与力学性能关系
1 赵凤, 鲁法云, 郭富安. 两种7050铝合金厚板的组织与性能[J]. 航空材料学报, 2015, 35 (2): 64- 71.
doi: 10.11868/j.issn.1005-5053.2015.2.008
1 ZHAO F , LU F Y , GUO F A . Comparative analysis of microstructures and properties of two kinds of thick plates of 7050-T7451 aluminum alloy[J]. Journal of Aeronautical Materials, 2015, 35 (2): 64- 71.
doi: 10.11868/j.issn.1005-5053.2015.2.008
2 DENG Y L , WAN L , ZHANG Y Y , et al. Influence of Mg content on quench sensitivity of Al-Zn-Mg-Cu aluminum alloys[J]. Journal of Alloys and Compounds, 2011, 509 (13): 4636- 4642.
doi: 10.1016/j.jallcom.2011.01.147
3 LIAO Y G , HAN X Q , ZENG M X , et al. Influence of Cu on microstructure and tensile properties of 7xxx series aluminum alloy[J]. Materials & Design, 2015, 66, 581- 586.
4 BIROL Y . AlB3 master alloy to grain refine AlSi10 Mg and AlSi12-Cu aluminium foundry alloys[J]. Journal of Alloys and Compounds, 2012, 513 (5): 150- 153.
5 HAN Y F , LI K , WANG J , et al. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminium[J]. Materials Science and Engineering: A, 2005, 405 (1-2): 206- 312.
6 EASTON M A , STJOHN D H . A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J]. Acta Materialia, 2001, 49 (10): 1867- 1878.
doi: 10.1016/S1359-6454(00)00368-2
7 LIU J , YAO P , ZHAO N Q , et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2016, 657 (5): 717- 725.
8 肖政兵, 邓运来, 唐建国, 等. Al-Ti-C与Al-Ti-B晶粒细化剂的Zr中毒机理[J]. 中国有色金属学报, 2012, 22 (2): 371- 378.
8 XIAO Z B , DENG Y L , TANG J G , et al. Poisoning mechanism of Zr on grain refiner of Al-Ti-C and Al-Ti-B[J]. The Chinese Journal of Nonferrous Metals, 2012, 22 (2): 371- 378.
9 黄元春, 杜志勇, 肖政兵, 等. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J]. 材料工程, 2015, 43 (12): 75- 80.
doi: 10.11868/j.issn.1001-4381.2015.12.013
9 HUANG Y C , DU Z Y , XIAO Z B , et al. Effect of Al-Ti-C and Al-Ti-B on microstructure and mechanical performance of 7050 aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (12): 75- 80.
doi: 10.11868/j.issn.1001-4381.2015.12.013
10 HARDMAN A , HAYES F H . Al-Ti-B grain refining alloys from Al, B2O3 and TiO2[J]. Materials Science Forum, 1996, 217-222, 247- 252.
doi: 10.4028/www.scientific.net/MSF.217-222
11 丁清伟, 任欣, 黄同瑊, 等. 不同晶粒细化剂及其对7050铝合金细化效果对比研究[J]. 铸造, 2014, 63 (12): 1259- 1262.
11 DING Q W , REN X , HUANG T J , et al. Different kinds of grain refiners and the refining effect comparison to 7050 aluminum alloy[J]. Foundry, 2014, 63 (12): 1259- 1262.
12 BUNN A M , SCHUMACHER P , KEARNS M A , et al. Grain refinement by Al-Ti-B alloys in aluminum melts: a study of the mechanisms of poisoning by zirconium[J]. Materials Science and Technology, 1999, 15 (10): 1115- 1123.
doi: 10.1179/026708399101505158
13 JONES G P , PEARSON J . Factor affecting grain refinement of aluminium using Ti and B additives[J]. Metallurgical Transactions B, 1976, 7 (2): 223- 234.
doi: 10.1007/BF02654921
14 NIE J F , MA X G , DING H M , et al. Microstructure and grain refining performance of a new Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds, 2009, 486 (1-2): 185- 190.
doi: 10.1016/j.jallcom.2009.06.190
15 MURTY B S , KORI S A , CHAKRABORTY M . Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews, 2002, 47 (1): 3- 29.
doi: 10.1179/095066001225001049
16 王淑俊. 含Zr铝合金的细化"中毒"现象及其细化新工艺研究[D]. 济南: 山东大学, 2009.
16 WANG S J. Study on the "poisoning" phenomena and the new refining technique for Zr-bearing aluminum alloys[D]. Jinan: Shandong University, 2009.
17 肖政兵. 晶粒细化剂应用及其Zr"中毒"机理研究[D]. 长沙: 中南大学, 2011.
17 XIAO Z B. Study on the mechanism of Zr-poisoning and the application of grain refiners[D]. Changsha: Central South University, 2011.
18 SEETHARAMAN S , SICHEN D . Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing[J]. Metallurgical and Materials Transactions B, 1994, 25 (4): 589- 595.
doi: 10.1007/BF02650079
19 于丽娜. 铝合金中TiB2、TiC界面过渡区 (相) 的研究[D]. 济南: 山东大学, 2007.
19 YU L N. Transition zone (phase) on the interface of TiB2, TiC in aluminium alloy[D]. Jinan: Shandong University, 2007.
20 LI Y X , HU J D , WANG H Y , et al. Thermodynamic and lattice parameter calculation of TiC produced from Al-Ti-C powders by laser igniting self-propagating high-temperature synthesis[J]. Materials Science and Engineering: A, 2007, 458 (1-2): 235- 239.
doi: 10.1016/j.msea.2006.12.075
21 NIE J F , MA X G , LI P T , et al. Effect of B/C ratio on the microstructure and grain refining efficiency of Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds, 2011, 509 (4): 1119- 1123.
doi: 10.1016/j.jallcom.2010.09.180
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[14] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[15] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn