1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China 2 Shandong Al & Mg Melt Technology Company Limited, Jinan 250061, China
The microstructure and phase composition of Al-5Ti-1B, Al-4Ti-1C and Al-5Ti-0.8B-0.2C master alloys were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS), and the effects of the three kinds of master alloys on the grain size and mechanical properties of 7050 alloy were investigated. The results show that the existence of Zr reduces the grain refining effects of Al-5Ti-1B and Al-4Ti-1C master alloys, but hardly influences the refinement of Al-5Ti-0.8B-0.2C master alloy. The reason is that Al-5Ti-0.8B-0.2C containing B-doped TiC can resist Zr-poisoning, and after adding 0.2% (mass fraction) Al-5Ti-0.8B-0.2C, the average grain size of 7050 alloy is reduced from about 200μm to (60±5) μm, the ultimate tensile strength increases from 405 MPa to 515 MPa, increasing by 27.2%, and the elongation rate increases from 2.1% to 4.1%. However, after adding 0.2% Al-5Ti-1B and Al-4Ti-1C master alloys, the grain size is larger and the distribution is uneven, exhibiting obvious "refinement poisoning" phenomenon.
ZHAO F , LU F Y , GUO F A . Comparative analysis of microstructures and properties of two kinds of thick plates of 7050-T7451 aluminum alloy[J]. Journal of Aeronautical Materials, 2015, 35 (2): 64- 71.
doi: 10.11868/j.issn.1005-5053.2015.2.008
2
DENG Y L , WAN L , ZHANG Y Y , et al. Influence of Mg content on quench sensitivity of Al-Zn-Mg-Cu aluminum alloys[J]. Journal of Alloys and Compounds, 2011, 509 (13): 4636- 4642.
doi: 10.1016/j.jallcom.2011.01.147
3
LIAO Y G , HAN X Q , ZENG M X , et al. Influence of Cu on microstructure and tensile properties of 7xxx series aluminum alloy[J]. Materials & Design, 2015, 66, 581- 586.
4
BIROL Y . AlB3 master alloy to grain refine AlSi10 Mg and AlSi12-Cu aluminium foundry alloys[J]. Journal of Alloys and Compounds, 2012, 513 (5): 150- 153.
5
HAN Y F , LI K , WANG J , et al. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminium[J]. Materials Science and Engineering: A, 2005, 405 (1-2): 206- 312.
6
EASTON M A , STJOHN D H . A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J]. Acta Materialia, 2001, 49 (10): 1867- 1878.
doi: 10.1016/S1359-6454(00)00368-2
7
LIU J , YAO P , ZHAO N Q , et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2016, 657 (5): 717- 725.
XIAO Z B , DENG Y L , TANG J G , et al. Poisoning mechanism of Zr on grain refiner of Al-Ti-C and Al-Ti-B[J]. The Chinese Journal of Nonferrous Metals, 2012, 22 (2): 371- 378.
HUANG Y C , DU Z Y , XIAO Z B , et al. Effect of Al-Ti-C and Al-Ti-B on microstructure and mechanical performance of 7050 aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (12): 75- 80.
doi: 10.11868/j.issn.1001-4381.2015.12.013
10
HARDMAN A , HAYES F H . Al-Ti-B grain refining alloys from Al, B2O3 and TiO2[J]. Materials Science Forum, 1996, 217-222, 247- 252.
doi: 10.4028/www.scientific.net/MSF.217-222
DING Q W , REN X , HUANG T J , et al. Different kinds of grain refiners and the refining effect comparison to 7050 aluminum alloy[J]. Foundry, 2014, 63 (12): 1259- 1262.
12
BUNN A M , SCHUMACHER P , KEARNS M A , et al. Grain refinement by Al-Ti-B alloys in aluminum melts: a study of the mechanisms of poisoning by zirconium[J]. Materials Science and Technology, 1999, 15 (10): 1115- 1123.
doi: 10.1179/026708399101505158
13
JONES G P , PEARSON J . Factor affecting grain refinement of aluminium using Ti and B additives[J]. Metallurgical Transactions B, 1976, 7 (2): 223- 234.
doi: 10.1007/BF02654921
14
NIE J F , MA X G , DING H M , et al. Microstructure and grain refining performance of a new Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds, 2009, 486 (1-2): 185- 190.
doi: 10.1016/j.jallcom.2009.06.190
15
MURTY B S , KORI S A , CHAKRABORTY M . Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews, 2002, 47 (1): 3- 29.
doi: 10.1179/095066001225001049
16
王淑俊. 含Zr铝合金的细化"中毒"现象及其细化新工艺研究[D]. 济南: 山东大学, 2009.
16
WANG S J. Study on the "poisoning" phenomena and the new refining technique for Zr-bearing aluminum alloys[D]. Jinan: Shandong University, 2009.
17
肖政兵. 晶粒细化剂应用及其Zr"中毒"机理研究[D]. 长沙: 中南大学, 2011.
17
XIAO Z B. Study on the mechanism of Zr-poisoning and the application of grain refiners[D]. Changsha: Central South University, 2011.
18
SEETHARAMAN S , SICHEN D . Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing[J]. Metallurgical and Materials Transactions B, 1994, 25 (4): 589- 595.
doi: 10.1007/BF02650079
YU L N. Transition zone (phase) on the interface of TiB2, TiC in aluminium alloy[D]. Jinan: Shandong University, 2007.
20
LI Y X , HU J D , WANG H Y , et al. Thermodynamic and lattice parameter calculation of TiC produced from Al-Ti-C powders by laser igniting self-propagating high-temperature synthesis[J]. Materials Science and Engineering: A, 2007, 458 (1-2): 235- 239.
doi: 10.1016/j.msea.2006.12.075
21
NIE J F , MA X G , LI P T , et al. Effect of B/C ratio on the microstructure and grain refining efficiency of Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds, 2011, 509 (4): 1119- 1123.
doi: 10.1016/j.jallcom.2010.09.180