Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 1-8    DOI: 10.11868/j.issn.1001-4381.2016.000687
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响
张国君1, 武玉英1, 杨化冰1, 刘桂亮2, 孙谦谦2, 刘相法1
1. 山东大学 材料液固结构演变与加工教育部重点实验室, 济南 250061;
2. 山东吕美熔体技术有限公司, 济南 250061
Influence of Anti Zr-poisoning Al-Ti-B-C Master Alloy on Mechanical Properties of 7050 Aluminum Alloy
ZHANG Guo-jun1, WU Yu-ying1, YANG Hua-bing1, LIU Gui-liang2, SUN Qian-qian2, LIU Xiang-fa1
1. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China;
2. Shandong Al&Mg Melt Technology Company Limited, Jinan 250061, China
全文: PDF(4795 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过场发射扫描电子显微镜(FESEM),X射线衍射仪(XRD),能量色谱仪(EDS)分析Al-5Ti-1B,Al-4Ti-1C和Al-5Ti-0.8B-0.2C中间合金的微观组织与物相组成,比较研究3种中间合金对7050铝合金晶粒尺寸与力学性能的影响。结果表明:Zr的存在削弱了Al-5Ti-1B和Al-4Ti-1C中间合金的细化效果,而对Al-5Ti-0.8B-0.2C中间合金细化效果影响较小。含掺杂型TiC粒子的Al-5Ti-0.8B-0.2C中间合金具有较好的抗Zr“中毒”能力,加入量为0.2%(质量分数,下同)时,含Zr7050铝合金平均晶粒尺寸由200μm细化至(60±5)μm,室温极限抗拉强度由405MPa提高到515MPa,提高了27.2%,伸长率由2.1%提高到4.1%。而加入0.2%的Al-5Ti-1B或Al-4Ti-1C中间合金时晶粒尺寸较粗大且分布不均匀,表现出明显的细化“中毒”。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张国君
武玉英
杨化冰
刘桂亮
孙谦谦
刘相法
关键词 7050铝合金晶粒细化Zr“中毒”Al-Ti-B-C中间合金力学性能    
Abstract:The microstructure and phase composition of Al-5Ti-1B, Al-4Ti-1C and Al-5Ti-0.8B-0.2C master alloys were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS), and the effects of the three kinds of master alloys on the grain size and mechanical properties of 7050 alloy were investigated. The results show that the existence of Zr reduces the grain refining effects of Al-5Ti-1B and Al-4Ti-1C master alloys, but hardly influences the refinement of Al-5Ti-0.8B-0.2C master alloy. The reason is that Al-5Ti-0.8B-0.2C containing B-doped TiC can resist Zr-poisoning, and after adding 0.2% (mass fraction) Al-5Ti-0.8B-0.2C, the average grain size of 7050 alloy is reduced from about 200μm to (60±5)μm, the ultimate tensile strength increases from 405MPa to 515MPa, increasing by 27.2%, and the elongation rate increases from 2.1% to 4.1%. However, after adding 0.2% Al-5Ti-1B and Al-4Ti-1C master alloys, the grain size is larger and the distribution is uneven, exhibiting obvious “refinement poisoning” phenomenon.
Key words7050 aluminum alloy    grain refinement    Zr-poisoning    Al-Ti-B-C master alloy    mechanical property
收稿日期: 2016-06-07      出版日期: 2017-04-17
中图分类号:  TG146.2  
基金资助: 
通讯作者: 武玉英(1982-),女,博士,副教授,从事轻质合金细化及强韧化,联系地址:山东省济南市历下区经十路17923号山东大学千佛山校区(250061),E-mail:wuyuying@sdu.edu.cn     E-mail: wuyuying@sdu.edu.cn
引用本文:   
张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
ZHANG Guo-jun, WU Yu-ying, YANG Hua-bing, LIU Gui-liang, SUN Qian-qian, LIU Xiang-fa. Influence of Anti Zr-poisoning Al-Ti-B-C Master Alloy on Mechanical Properties of 7050 Aluminum Alloy. Journal of Materials Engineering, 2017, 45(4): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000687      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/1
[1] 赵凤, 鲁法云, 郭富安. 两种7050铝合金厚板的组织与性能[J]. 航空材料学报, 2015, 35(2): 64-71. ZHAO F, LU F Y, GUO F A. Comparative analysis of microstructures and properties of two kinds of thick plates of 7050-T7451 aluminum alloy[J]. Journal of Aeronautical Materials, 2015, 35(2): 64-71.
[2] DENG Y L, WAN L, ZHANG Y Y, et al. Influence of Mg content on quench sensitivity of Al-Zn-Mg-Cu aluminum alloys[J]. Journal of Alloys and Compounds, 2011, 509(13): 4636-4642.
[3] LIAO Y G, HAN X Q, ZENG M X, et al. Influence of Cu on microstructure and tensile properties of 7xxx series aluminum alloy[J]. Materials & Design, 2015, 66: 581-586.
[4] BIROL Y. AlB3 master alloy to grain refine AlSi10Mg and AlSi12-Cu aluminium foundry alloys[J]. Journal of Alloys and Compounds, 2012, 513(5): 150-153.
[5] HAN Y F, LI K, WANG J, et al. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminium[J]. Materials Science and Engineering: A, 2005, 405(1-2): 306-312.
[6] EASTON M A, STJOHN D H. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J]. Acta Materialia,2001, 49(10): 1867-1878.
[7] LIU J, YAO P, ZHAO N Q, et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2016, 657(5): 717-725.
[8] 肖政兵, 邓运来, 唐建国, 等. Al-Ti-C与Al-Ti-B晶粒细化剂的Zr中毒机理[J]. 中国有色金属学报, 2012, 22(2): 371-378. XIAO Z B, DENG Y L, TANG J G, et al. Poisoning mechanism of Zr on grain refiner of Al-Ti-C and Al-Ti-B[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(2): 371-378.
[9] 黄元春, 杜志勇, 肖政兵, 等. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与 力学性能的影响[J].材料工程,2015,43(12):75-80. HUANG Y C, DU Z Y, XIAO Z B, et al. Effect of Al-Ti-C and Al-Ti-B on microstructure and mechanical performance of 7050 aluminum alloy[J]. Journal of Materials Engineering, 2015, 43(12): 75-80.
[10] HARDMAN A, HAYES F H. Al-Ti-B grain refining alloys from Al, B2O3 and TiO2[J]. Materials Science Forum, 1996, 217-222: 247-252.
[11] 丁清伟,任欣,黄同瑊,等.不同晶粒细化剂及其对7050铝合金细化效果对比研究[J]. 铸造, 2014, 63(12): 1259-1262. DING Q W, REN X, HUANG T J, et al. Different kinds of grain refiners and the refining effect comparison to 7050 aluminum alloy[J]. Foundry, 2014, 63(12): 1259-1262.
[12] BUNN A M, SCHUMACHER P, KEARNS M A, et al. Grain refinement by Al-Ti-B alloys in aluminum melts: a study of the mechanisms of poisoning by zirconium[J]. Materials Science and Technology, 1999, 15(10): 1115-1123.
[13] JONES G P, PEARSON J. Factor affecting grain refinement of aluminium using Ti and B additives[J]. Metallurgical Transactions B, 1976, 7(2): 223-234.
[14] NIE J F, MA X G, DING H M, et al. Microstructure and grain refining performance of a new Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds, 2009, 486(1-2): 185-190.
[15] MURTY B S, KORI S A, CHAKRABORTY M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews, 2002, 47(1): 3-29.
[16] 王淑俊. 含Zr铝合金的细化"中毒"现象及其细化新工艺研究[D]. 济南:山东大学, 2009. WANG S J. Study on the "poisoning" phenomena and the new refining technique for Zr-bearing aluminum alloys[D]. Jinan: Shandong University, 2009.
[17] 肖政兵. 晶粒细化剂应用及其Zr"中毒"机理研究[D]. 长沙:中南大学, 2011. XIAO Z B. Study on the mechanism of Zr-poisoning and the application of grain refiners[D]. Changsha: Central South University, 2011.
[18] SEETHARAMAN S, SICHEN D. Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing[J]. Metallurgical and Materials Transactions B, 1994, 25(4): 589-595.
[19] 于丽娜. 铝合金中TiB2、TiC界面过渡区(相)的研究[D]. 济南:山东大学, 2007. YU L N. Transition zone (phase) on the interface of TiB2, TiC in aluminium alloy[D]. Jinan: Shandong University, 2007.
[20] LI Y X, HU J D, WANG H Y, et al. Thermodynamic and lattice parameter calculation of TiC produced from Al-Ti-C powders by laser igniting self-propagating high-temperature synthesis[J]. Materials Science and Engineering: A, 2007, 458(1-2): 235-239.
[21] NIE J F, MA X G, LI P T, et al. Effect of B/C ratio on the microstructure and grain refining efficiency of Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds, 2011, 509(4): 1119-1123.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[3] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[6] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[7] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[8] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[14] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn