1 School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, Guizhou, China 2 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 3 Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
By means of calculating stacking fault energy(SFE), measuring creep properties and contrast analysis of dislocation configuration, the influence of the temperature on the stacking fault energy and the creep mechanism of a single crystal nickel-based superalloy was investigated. Results show that there is a lower stacking fault energy(SFE) of the alloy at 760℃, and the deformed mechanism of the alloy during creep is the cubical γ' phase sheared by 〈110〉 super-dislocation which may be decomposed to form the configuration of (1/3)〈112〉 super-Shockley partials dislocation plus the super-lattice intrinsic stacking fault(SISF). But the stacking fault energy of the alloy increases with temperature, so the deformed mechanism of the alloy during creep at 1070℃ is the screw or edge super-dislocation shearing into the rafted γ' phase. The SFE of the alloy at 980℃ is in the middle value of the SFEs between 760℃ and 1070℃, the main deformed mechanism of the alloy during creep is the screw or edge super-dislocation shearing into the rafted γ' phase. And some super-dislocation shearing into γ' phase may cross-slip from {111} to {100} planes to form the K-W locks configuration of (1/2)〈110〉 partials plus the anti-phase boundary(APB). The K-W locks with non plane core structure may restrain the slipping and cross-slipping of dislocations to improve the creep resistance of alloy. Wherein, the lower strain rate during creep releases too less deformed heat to activate the dislocation in the K-W locks for re-slipping on {111} plane, which is thought to be the main reason of the K-W locks kept in the alloy during creep at 980℃.
RONG Y H , MENG Q P , HE G , et al. Calculation of the stacking fault energies of Fe-Mn alloys by embedded atom method[J]. Journal of Shanghai Jiaotong University, 2003, 37 (2): 171- 174.
WANG J T , ZHOU R S , WANG M J , et al. Effect of deformation temperature on tensile deformation behavior of Fe-20Mn-3Cu-1.3C TWIP steel[J]. Journal of Materials Engineering, 2016, 44 (1): 11- 18.
3
KNOWLES D M , CHEN Q Z . Superlattice stacking fault formation and twinning during creep in γ'/γ single crystal superalloy CMSX-4[J]. Materials Science and Engineering:A, 2003, 340 (1/2): 88- 102.
4
GOURDET S , MONTHEILLET F . Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals[J]. Acta Materialia, 2002, 50 (11): 2801- 2812.
doi: 10.1016/S1359-6454(02)00098-8
5
KARMTHALER H P , MUEHLBACGER E , RENTENBERGER C . The influence of the fault energies on the anomalous mechanical behaviour of Ni3Al alloys[J]. Acta Materialia, 1996, 44 (2): 547- 560.
doi: 10.1016/1359-6454(95)00191-3
LIU J L , JIN T , ZHANG J H , et al. Anisotropy of enduring properties of a single crystal nickel-base superalloy[J]. Acta Metalurgica Sinica, 2001, 37 (12): 1233- 1237.
doi: 10.3321/j.issn:0412-1961.2001.12.001
SHU D L , TIAN S G , LIANG S , et al. Deformation and damage mechanism of a 4.5%Re-containing nickel-based single crystal superalloy during creep at 980℃[J]. Journal of Materials Engineering, 2017, 45 (1): 93- 100.
LUO Y S , ZHAO Y S , YANG S , et al. Effects of Ru on microstructure and stress rupture property of Ni-based single crystal superalloy DD22[J]. Journal of Aeronautical Materials, 2016, 36 (3): 132- 140.
WANG K G , LI J R , LIU S Z , et al. Study on creep properties of single crystal superalloy DD6 at 980℃[J]. Journal of Materials Engineering, 2008, (8): 7- 11.
LIANG S , TIAN S G , LIU Z X , et al. Creep and damage behavior of containing Mo nickel-based single crystal superalloy at high temperature[J]. The Chinese Journal of Nonferrous Metals, 2017, 27 (5): 911- 919.
11
MAYA C , EGGELER G , WEBSTER G A , et al. Double shear creep testing of superalloy single crystal at temperatures beyond 1000℃[J]. Materials Science and Engineering:A, 1995, 199, 121- 130.
doi: 10.1016/0921-5093(94)09721-6
12
LIU J L , JIN T , SUN X F , et al. Anisotropy of stress rupture properties of Ni-base single crystal superalloy at two temperatures[J]. Materials Science and Engineering:A, 2008, 479, 277- 284.
doi: 10.1016/j.msea.2007.07.050
13
ERICSSION T . On the suzuki effect and spinodal decomposition[J]. Acta Materialia, 1966, 14 (9): 1073- 1084.
doi: 10.1016/0001-6160(66)90195-7
14
DINSDALE A T . SGTE data for pure elements[J]. Calphad, 1991, 15 (4): 317- 425.
doi: 10.1016/0364-5916(91)90030-N
15
CHOU K C , LI W C , LI F S , et al. Formalism of new ternary model expressed in terms of binary regular-solution type parameters[J]. Calphad, 1996, 20 (4): 395- 406.
doi: 10.1016/S0364-5916(97)00002-3
16
MIEDENA A R , CHATEL P F , BOER F R . Cohesion in alloy-fundamentals of a semi-empirical model[J]. Physica B+C, 1980, 100 (1): 1- 28.
YU X F , TIAN S G , WANG M G , et al. The stacking fault energy of Ni-Al-Re/Ru alloy[J]. Chinese Journal of Materials Research, 2008, 22 (5): 515- 520.
doi: 10.3321/j.issn:1005-3093.2008.05.013
18
TIAN S G , ZHANG J H , XU Y B , et al. Features and effect factors of creep of single crystal nickel-based superalloys[J]. Metallurgical and Materials Transactions A, 2001, 32, 2947- 2957.
doi: 10.1007/s11661-001-0169-8
19
FOILES S M , DAW M S . Application of the embedded atom method to Ni3Al[J]. Journal of Materials Research, 1987, 2 (1): 5- 15.
doi: 10.1557/JMR.1987.0005
WANG Y C , LAN P , LI Y , et al. Effect of alloying element on mechanical behavior of Fe-Mn-C TWIP steel[J]. Journal of Materials Engineering, 2015, 43 (9): 30- 38.
21
VITEK V . Atomic structure of dislocations in intermetallics with close packed structure:a comparative study[J]. Intermetallics, 1998, 6 (7/8): 579- 585.
22
KEAR B H , GIAMEI A F , SILCOCK J M , et al. Slip and climb processes in γ' precipitation hardened nickel-base alloys[J]. Scripta Materialia, 1968, 2 (5): 287- 293.
23
KNOWLES D M , CHEN Q Z . Superlattice stacking fault formation and twinning during creep in γ'/γ single crystal superalloy CMSX-4[J]. Materials Science and Engineering:A, 2003, 340, 88- 102.
doi: 10.1016/S0921-5093(02)00172-7
24
JÁCOMEA L A , NÖRTERSHÄUSERA P , HEYEAR J K , et al. High-temperature and low-stress creep anisotropy of single-crystal superalloys[J]. Acta Materialia, 2013, 61, 2926- 2943.
doi: 10.1016/j.actamat.2013.01.052
25
FOILES S M , DAW M S . Application of the embedded atom method to Ni3Al[J]. Journal of Materials Research, 1987, 2 (1): 5- 15.
doi: 10.1557/JMR.1987.0005
SHU D L , TIAN S G , WU J , et al. Creep behavior of a containing Re/Ru single crystal nickel-based superalloy at elevated temperatures[J]. Journal of Materials Engineering, 2017, 45 (3): 41- 46.
27
JOHNSON W R , BARRET C R , NIX W D . The high-temperature creep behavior of nickel-rich Ni-W solid solutions[J]. Metallurgical and Materials Transactions A, 1972, 3 (4): 963- 969.
doi: 10.1007/BF02647673
28
MOKHER A K , BIRD J E , DORN J E . Experimental correlations for high-temperature creep[J]. Transaction Quarterly ASM, 1969, 62, 155- 179.
LI J R , SHI Z X , YUAN H L , et al. Tensile anisotropy of single crystal superalloy DD6[J]. Journal of Materials Engineering, 2008, (12): 6- 10.
doi: 10.3969/j.issn.1001-4381.2008.12.002
30
HEMKER K J , MILLS M J , NIX W D . An investigation of the mechanisms that control intermediate temperature creep of Ni3Al[J]. Acta Metallurgica et Materialia, 1991, 39 (8): 1901- 1913.
doi: 10.1016/0956-7151(91)90159-X
31
RONG T S , JONES I P , SMALLMAN R E . Dislocation mechanisms in creep of Ni3Al at intermediate temperature[J]. Acta Metallurgica et Materialia, 1995, 43 (4): 1385- 1393.
doi: 10.1016/0956-7151(94)00381-Q