Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 87-95    DOI: 10.11868/j.issn.1001-4381.2016.000711
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
单晶镍基合金的层错能及其对蠕变机制的影响
闫化锦1, 田素贵1,2, 朱新杰2, 于慧臣3, 舒德龙2, 张宝帅2
1. 贵州工程应用技术学院 机械工程学院, 贵州 毕节 551700;
2. 沈阳工业大学 材料科学与工程学院, 沈阳 110870;
3. 中国航发北京 航空材料研究院 航空材料检测与评价北京市重点实验室, 北京 100095
Stacking Fault Energies of Single Crystal Nickel-based Superalloy and Its Influence on Creep Mechanism
YAN Hua-jin1, TIAN Su-gui1,2, ZHU Xin-jie2, YU Hui-chen3, SHU De-long2, ZHANG Bao-shuai2
1. School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, Guizhou, China;
2. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
3. Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(2167 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过对合金进行不同温度层错能的计算、蠕变性能测试及位错组态的衍衬分析,研究温度对单晶镍基合金层错能和蠕变机制的影响。结果表明:合金在760℃具有较低的层错能,其蠕变期间的变形机制是〈110〉超位错剪切进入γ'相,其中,切入γ'相的位错可分解形成(1/3)〈112〉位错+(SISF)层错的位错组态。随温度的提高,合金的层错能增大,合金在1070℃蠕变期间的变形机制是〈110〉螺、刃超位错剪切进入γ'相。在980℃,合金的层错能介于760~1070℃之间,蠕变期间的主要变形机制是〈110〉螺、刃超位错剪切进入γ'相,其中,剪切进入γ'相的螺位错由{111}面交滑移至{100}面,形成(1/2)〈110〉不全位错+反向畴界(APB)的K-W锁位错组态,这种具有面角非平面芯结构的K-W锁可抑制位错的交滑移,提高合金的蠕变抗力。其中,蠕变期间较低的应变速率仅释放较少的形变热,不足以激活K-W锁中的位错在{111}面滑移,是K-W锁在980℃得以保留的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫化锦
田素贵
朱新杰
于慧臣
舒德龙
张宝帅
关键词 单晶镍基合金层错能蠕变衍衬分析变形机制    
Abstract:By means of calculating stacking fault energy(SFE), measuring creep properties and contrast analysis of dislocation configuration, the influence of the temperature on the stacking fault energy and the creep mechanism of a single crystal nickel-based superalloy was investigated. Results show that there is a lower stacking fault energy(SFE) of the alloy at 760℃, and the deformed mechanism of the alloy during creep is the cubical γ' phase sheared by 〈110〉 super-dislocation which may be decomposed to form the configuration of (1/3)〈112〉 super-Shockley partials dislocation plus the super-lattice intrinsic stacking fault(SISF). But the stacking fault energy of the alloy increases with temperature, so the deformed mechanism of the alloy during creep at 1070℃ is the screw or edge super-dislocation shearing into the rafted γ' phase. The SFE of the alloy at 980℃ is in the middle value of the SFEs between 760℃ and 1070℃, the main deformed mechanism of the alloy during creep is the screw or edge super-dislocation shearing into the rafted γ' phase. And some super-dislocation shearing into γ' phase may cross-slip from {111} to {100} planes to form the K-W locks configuration of (1/2)〈110〉 partials plus the anti-phase boundary(APB). The K-W locks with non plane core structure may restrain the slipping and cross-slipping of dislocations to improve the creep resistance of alloy. Wherein, the lower strain rate during creep releases too less deformed heat to activate the dislocation in the K-W locks for re-slipping on {111} plane, which is thought to be the main reason of the K-W locks kept in the alloy during creep at 980℃.
Key wordssingle crystal nickel-base superalloy    stacking fault energy    creep    contrast analysis    deformation mechanism
收稿日期: 2016-06-12      出版日期: 2018-10-17
中图分类号:  TG111.8  
通讯作者: 田素贵(1952-),男,教授,从事高温材料及结构表征方面的研究工作,联系地址:贵州省毕节市贵州工程应用技术学院机械工程学院(551700),E-mail:tiansugui2003@163.com     E-mail: tiansugui2003@163.com
引用本文:   
闫化锦, 田素贵, 朱新杰, 于慧臣, 舒德龙, 张宝帅. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87-95.
YAN Hua-jin, TIAN Su-gui, ZHU Xin-jie, YU Hui-chen, SHU De-long, ZHANG Bao-shuai. Stacking Fault Energies of Single Crystal Nickel-based Superalloy and Its Influence on Creep Mechanism. Journal of Materials Engineering, 2018, 46(10): 87-95.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000711      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/87
[1] 戎咏华,孟庆平,何刚,等. Fe-Mn合金层错能的嵌入原子法计算[J]. 上海交通大学学报,2003,37(2):171-174. RONG Y H,MENG Q P,HE G,et al. Calculation of the stacking fault energies of Fe-Mn alloys by embedded atom method[J]. Journal of Shanghai Jiaotong University,2003,37(2):171-174.
[2] 王建亭,周荣生,王明杰,等. 形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响[J].材料工程,2016,44(1):11-18. WANG J T,ZHOU R S,WANG M J,et al. Effect of deformation temperature on tensile deformation behavior of Fe-20Mn-3Cu-1.3C TWIP steel[J]. Journal of Materials Engineering,2016,44(1):11-18.
[3] KNOWLES D M,CHEN Q Z. Superlattice stacking fault formation and twinning during creep in γ'/γ single crystal superalloy CMSX-4[J]. Materials Science and Engineering:A,2003,340(1/2):88-102.
[4] GOURDET S,MONTHEILLET F. Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals[J]. Acta Materialia,2002,50(11):2801-2812.
[5] KARMTHALER H P,MUEHLBACGER E,RENTENBERGER C. The influence of the fault energies on the anomalous mechanical behaviour of Ni3Al alloys[J]. Acta Materialia,1996,44(2):547-560.
[6] 刘金来,金涛,张静华,等. 一种镍基单晶高温合金持久性能的各向异性[J]. 金属学报,2001,37(12):1233-1237. LIU J L,JIN T,ZHANG J H,et al. Anisotropy of enduring properties of a single crystal nickel-base superalloy[J]. Acta Metalurgica Sinica,2001,37(12):1233-1237.
[7] 舒德龙,田素贵,梁爽,等. 一种4.5%Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程,2017,45(1):93-100. SHU D L,TIAN S G,LIANG S,et al. Deformation and damage mechanism of a 4.5%Re-containing nickel-based single crystal superalloy during creep at 980℃[J]. Journal of Materials Engineering,2017,45(1):93-100.
[8] 骆宇时,赵云松,杨帅,等. Ru对DD22镍基单晶高温合金组织和持久性能的影响[J]. 航空材料学报,2016,36(3):132-140. LUO Y S,ZHAO Y S,YANG S,et al.Effects of Ru on microstructure and stress rupture property of Ni-based single crystal superalloy DD22[J]. Journal of Aeronautical Materials,2016,36(3):132-140.
[9] 王开国,李嘉荣,刘世忠,等. DD6单晶高温合金980℃蠕变性能影响[J]. 材料工程,2008(8):7-11. WANG K G, LI J R, LIU S Z,et al. Study on creep properties of single crystal superalloy DD6 at 980℃[J]. Journal of Materials Engineering,2008(8):7-11.
[10] 梁爽,田素贵,刘志鑫,等.含Mo单晶镍合金的高温蠕变及损伤行为[J].中国有色金属学报,2017,27(5):911-919. LIANG S,TIAN S G,LIU Z X,et al.Creep and damage behavior of containing Mo nickel-based single crystal superalloy at high temperature[J].The Chinese Journal of Nonferrous Metals,2017,27(5):911-919.
[11] MAYA C,EGGELER G,WEBSTER G A,et al. Double shear creep testing of superalloy single crystal at temperatures beyond 1000℃[J]. Materials Science and Engineering:A,1995,199:121-130.
[12] LIU J L,JIN T,SUN X F,et al. Anisotropy of stress rupture properties of Ni-base single crystal superalloy at two temperatures[J]. Materials Science and Engineering:A,2008,479:277-284.
[13] ERICSSION T. On the suzuki effect and spinodal decomposition[J]. Acta Materialia,1966,14(9):1073-1084.
[14] DINSDALE A T. SGTE data for pure elements[J]. Calphad,1991,15(4):317-425.
[15] CHOU K C,LI W C,LI F S,et al. Formalism of new ternary model expressed in terms of binary regular-solution type parameters[J]. Calphad,1996,20(4):395-406.
[16] MIEDENA A R,CHATEL P F,BOER F R. Cohesion in alloy-fundamentals of a semi-empirical model[J]. Physica B+C,1980,100(1):1-28.
[17] 于兴福,田素贵,王明罡,等. Ni-Al-Re/Ru合金的层错能[J]. 材料研究学报,2008,22(5):515-520. YU X F,TIAN S G,WANG M G,et al. The stacking fault energy of Ni-Al-Re/Ru alloy[J]. Chinese Journal of Materials Research,2008,22(5):515-520.
[18] TIAN S G,ZHANG J H,XU Y B,et al. Features and effect factors of creep of single crystal nickel-based superalloys[J]. Metallurgical and Materials Transactions A,2001,32:2947-2957.
[19] FOILES S M, DAW M S. Application of the embedded atom method to Ni3Al[J]. Journal of Materials Research,1987,2(1):5-15.
[20] 王玉昌,兰鹏,李杨,等. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程,2015,43(9):30-38. WANG Y C,LAN P,LI Y,et al. Effect of alloying element on mechanical behavior of Fe-Mn-C TWIP steel[J]. Journal of Materials Engineering,2015,43(9):30-38.
[21] VITEK V. Atomic structure of dislocations in intermetallics with close packed structure:a comparative study[J]. Intermetallics,1998,6(7/8):579-585.
[22] KEAR B H,GIAMEI A F,SILCOCK J M,et al. Slip and climb processes in γ' precipitation hardened nickel-base alloys[J]. Scripta Materialia,1968,2(5):287-293.
[23] KNOWLES D M,CHEN Q Z. Superlattice stacking fault formation and twinning during creep in γ'/γ single crystal superalloy CMSX-4[J]. Materials Science and Engineering:A,2003,340:88-102.
[24] JÁCOMEA L A,NÖRTERSHÄUSERA P,HEYEAR J K,et al. High-temperature and low-stress creep anisotropy of single-crystal superalloys[J]. Acta Materialia,2013,61:2926-2943.
[25] FOILES S M,DAW M S. Application of the embedded atom method to Ni3Al[J]. Journal of Materials Research,1987,2(1):5-15.
[26] 舒德龙,田素贵,吴静,等. 一种含4.5%Re/3.0%Ru的单晶镍基合金的高温蠕变行为[J]. 材料工程,2017,45(3):41-46. SHU D L,TIAN S G,WU J,et al. Creep behavior of a containing Re/Ru single crystal nickel-based superalloy at elevated temperatures[J].Journal of Materials Engineering,2017,45(3):41-46.
[27] JOHNSON W R,BARRET C R,NIX W D. The high-temperature creep behavior of nickel-rich Ni-W solid solutions[J]. Metallurgical and Materials Transactions A,1972,3(4):963-969.
[28] MOKHER A K,BIRD J E,DORN J E. Experimental correlations for high-temperature creep[J]. Transaction Quarterly ASM,1969,62:155-179.
[29] 李嘉荣,史振学,袁海龙,等. 单晶高温合金DD6拉伸性能各向异性[J]. 材料工程,2008(12):6-10. LI J R,SHI Z X,YUAN H L,et al. Tensile anisotropy of single crystal superalloy DD6[J]. Journal of Materials Engineering, 2008(12):6-10.
[30] HEMKER K J,MILLS M J,NIX W D. An investigation of the mechanisms that control intermediate temperature creep of Ni3Al[J]. Acta Metallurgica et Materialia,1991,39(8):1901-1913.
[31] RONG T S,JONES I P,SMALLMAN R E. Dislocation mechanisms in creep of Ni3Al at intermediate temperature[J]. Acta Metallurgica et Materialia,1995,43(4):1385-1393.
[1] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[2] 李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
[3] 刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
[4] 崔璐, 石红梅, 张涛, 王澎, 李臻. 热交变载荷下10% Cr耐热钢蠕变疲劳裂纹萌生特征[J]. 材料工程, 2017, 45(9): 143-148.
[5] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[6] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[7] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[8] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
[9] 舒德龙, 田素贵, 吴静, 张宝帅, 梁爽. 一种含4.5%Re/3.0%Ru的单晶镍基合金的高温蠕变行为[J]. 材料工程, 2017, 45(3): 41-46.
[10] 王天佑, 王小蒙, 赵子华, 张峥. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程, 2017, 45(2): 88-95.
[11] 舒德龙, 田素贵, 梁爽, 张宝帅. 一种4.5% Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45(1): 93-100.
[12] 陈斌, 孙威, 赵颉, 胡常青. 亚稳β型钛合金中的{332}<113>变形孪晶[J]. 材料工程, 2017, 45(1): 111-119.
[13] 李振荣, 马春蕾, 蒋成勇, 田素贵, 陈礼清, 刘相华. 热连轧GH4169合金的点阵常数与蠕变性能[J]. 材料工程, 2016, 44(3): 97-102.
[14] 王建亭, 周荣生, 王明杰, 朱定一. 形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响[J]. 材料工程, 2016, 44(1): 11-18.
[15] 王岚, 王宇, 邢永明, 胡江三. 短期老化对橡胶粉改性沥青流变性能的影响[J]. 材料工程, 2016, 44(1): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn