Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (10): 87-95    DOI: 10.11868/j.issn.1001-4381.2016.000711
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
单晶镍基合金的层错能及其对蠕变机制的影响
闫化锦1, 田素贵1,2,*(), 朱新杰2, 于慧臣3, 舒德龙2, 张宝帅2
1 贵州工程应用技术学院 机械工程学院, 贵州 毕节 551700
2 沈阳工业大学 材料科学与工程学院, 沈阳 110870
3 中国航发北京航空材料研究院 航空材料检测与评价北京市重点实验室, 北京 100095
Stacking Fault Energies of Single Crystal Nickel-based Superalloy and Its Influence on Creep Mechanism
Hua-jin YAN1, Su-gui TIAN1,2,*(), Xin-jie ZHU2, Hui-chen YU3, De-long SHU2, Bao-shuai ZHANG2
1 School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, Guizhou, China
2 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
3 Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(2167 KB)   HTML ( 23 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过对合金进行不同温度层错能的计算、蠕变性能测试及位错组态的衍衬分析,研究温度对单晶镍基合金层错能和蠕变机制的影响。结果表明:合金在760℃具有较低的层错能,其蠕变期间的变形机制是〈110〉超位错剪切进入γ'相,其中,切入γ'相的位错可分解形成(1/3)〈112〉位错+(SISF)层错的位错组态。随温度的提高,合金的层错能增大,合金在1070℃蠕变期间的变形机制是〈110〉螺、刃超位错剪切进入γ'相。在980℃,合金的层错能介于760~1070℃之间,蠕变期间的主要变形机制是〈110〉螺、刃超位错剪切进入γ'相,其中,剪切进入γ'相的螺位错由{111}面交滑移至{100}面,形成(1/2)〈110〉不全位错+反向畴界(APB)的K-W锁位错组态,这种具有面角非平面芯结构的K-W锁可抑制位错的交滑移,提高合金的蠕变抗力。其中,蠕变期间较低的应变速率仅释放较少的形变热,不足以激活K-W锁中的位错在{111}面滑移,是K-W锁在980℃得以保留的主要原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫化锦
田素贵
朱新杰
于慧臣
舒德龙
张宝帅
关键词 单晶镍基合金层错能蠕变衍衬分析变形机制    
Abstract

By means of calculating stacking fault energy(SFE), measuring creep properties and contrast analysis of dislocation configuration, the influence of the temperature on the stacking fault energy and the creep mechanism of a single crystal nickel-based superalloy was investigated. Results show that there is a lower stacking fault energy(SFE) of the alloy at 760℃, and the deformed mechanism of the alloy during creep is the cubical γ' phase sheared by 〈110〉 super-dislocation which may be decomposed to form the configuration of (1/3)〈112〉 super-Shockley partials dislocation plus the super-lattice intrinsic stacking fault(SISF). But the stacking fault energy of the alloy increases with temperature, so the deformed mechanism of the alloy during creep at 1070℃ is the screw or edge super-dislocation shearing into the rafted γ' phase. The SFE of the alloy at 980℃ is in the middle value of the SFEs between 760℃ and 1070℃, the main deformed mechanism of the alloy during creep is the screw or edge super-dislocation shearing into the rafted γ' phase. And some super-dislocation shearing into γ' phase may cross-slip from {111} to {100} planes to form the K-W locks configuration of (1/2)〈110〉 partials plus the anti-phase boundary(APB). The K-W locks with non plane core structure may restrain the slipping and cross-slipping of dislocations to improve the creep resistance of alloy. Wherein, the lower strain rate during creep releases too less deformed heat to activate the dislocation in the K-W locks for re-slipping on {111} plane, which is thought to be the main reason of the K-W locks kept in the alloy during creep at 980℃.

Key wordssingle crystal nickel-base superalloy    stacking fault energy    creep    contrast analysis    deformation mechanism
收稿日期: 2016-06-12      出版日期: 2018-10-17
中图分类号:  TG111.8  
基金资助:国家自然科学基金资助项目(51271125)
通讯作者: 田素贵     E-mail: tiansugui2003@163.com
作者简介: 田素贵(1952-), 男, 教授, 从事高温材料及结构表征方面的研究工作, 联系地址:贵州省毕节市贵州工程应用技术学院机械工程学院(551700), E-mail:tiansugui2003@163.com
引用本文:   
闫化锦, 田素贵, 朱新杰, 于慧臣, 舒德龙, 张宝帅. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87-95.
Hua-jin YAN, Su-gui TIAN, Xin-jie ZHU, Hui-chen YU, De-long SHU, Bao-shuai ZHANG. Stacking Fault Energies of Single Crystal Nickel-based Superalloy and Its Influence on Creep Mechanism. Journal of Materials Engineering, 2018, 46(10): 87-95.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000711      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/87
T/℃ ΔGbE(γε)/
(J·mol-1)
ΔGbγε/
(J·mol-1)
ΔGsur/
(mJ·m-2)
ΔGchm/
(J·mol-1)
760 -30656.26 -24568.98 -17.68 -111505.93
980 -33858.31 -27733.85 -17.68 -135253.56
1070 -35263.09 -29029.52 -17.68 -144968.50
Table 1  Ni-Al-W三元合金中自由能在不同温度的计算值
Fig.1  Ni-6%Al-1%M合金系中γ′相在不同温度的层错能
T/℃ Cr Co W Mo Ta Re
760 0.838 0.835 1 0.746 0.853 0.587
980 0.895 0.893 1 0.830 0.916 0.745
1070 0.904 0.903 1 0.860 0.927 0.771
Table 2  合金组成元素M在不同温度的当量换算系数
Fig.2  合金在不同条件测定的蠕变曲线
Fig.3  不同条件下合金蠕变断裂后的微观组织
(a)760℃/810MPa; (b)980℃/300MPa; (c)1070℃/160MPa
Fig.4  760℃/810MPa蠕变241h断裂后合金γ′相内的位错组态
(a)g=002;(b)g=020;(c)g=${\rm{\bar 1}}$1${\rm{\bar 3}}$
Fig.5  980℃/300MPa蠕变155h断裂后筏状γ′相内的位错组态
(a)g=022;(b)g=002;(c)g=020;(d)g=${\rm{\bar 1}}$1${\rm{\bar 3}}$
Fig.6  1070℃/160MPa蠕变132h断裂后合金γ′相内的位错组态
(a)g=0${\rm{\bar 2}}$2;(b)g=022;(c)g=020;(d)g=131
Fig.7  γ′相中{111}面的原子排列方式及位错分解示意图
(a)原子排列方式;(b)平面位错芯;(c)非平面位错芯
1 戎咏华, 孟庆平, 何刚, 等. Fe-Mn合金层错能的嵌入原子法计算[J]. 上海交通大学学报, 2003, 37 (2): 171- 174.
1 RONG Y H , MENG Q P , HE G , et al. Calculation of the stacking fault energies of Fe-Mn alloys by embedded atom method[J]. Journal of Shanghai Jiaotong University, 2003, 37 (2): 171- 174.
2 王建亭, 周荣生, 王明杰, 等. 形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响[J]. 材料工程, 2016, 44 (1): 11- 18.
2 WANG J T , ZHOU R S , WANG M J , et al. Effect of deformation temperature on tensile deformation behavior of Fe-20Mn-3Cu-1.3C TWIP steel[J]. Journal of Materials Engineering, 2016, 44 (1): 11- 18.
3 KNOWLES D M , CHEN Q Z . Superlattice stacking fault formation and twinning during creep in γ'/γ single crystal superalloy CMSX-4[J]. Materials Science and Engineering:A, 2003, 340 (1/2): 88- 102.
4 GOURDET S , MONTHEILLET F . Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals[J]. Acta Materialia, 2002, 50 (11): 2801- 2812.
doi: 10.1016/S1359-6454(02)00098-8
5 KARMTHALER H P , MUEHLBACGER E , RENTENBERGER C . The influence of the fault energies on the anomalous mechanical behaviour of Ni3Al alloys[J]. Acta Materialia, 1996, 44 (2): 547- 560.
doi: 10.1016/1359-6454(95)00191-3
6 刘金来, 金涛, 张静华, 等. 一种镍基单晶高温合金持久性能的各向异性[J]. 金属学报, 2001, 37 (12): 1233- 1237.
doi: 10.3321/j.issn:0412-1961.2001.12.001
6 LIU J L , JIN T , ZHANG J H , et al. Anisotropy of enduring properties of a single crystal nickel-base superalloy[J]. Acta Metalurgica Sinica, 2001, 37 (12): 1233- 1237.
doi: 10.3321/j.issn:0412-1961.2001.12.001
7 舒德龙, 田素贵, 梁爽, 等. 一种4.5%Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45 (1): 93- 100.
7 SHU D L , TIAN S G , LIANG S , et al. Deformation and damage mechanism of a 4.5%Re-containing nickel-based single crystal superalloy during creep at 980℃[J]. Journal of Materials Engineering, 2017, 45 (1): 93- 100.
8 骆宇时, 赵云松, 杨帅, 等. Ru对DD22镍基单晶高温合金组织和持久性能的影响[J]. 航空材料学报, 2016, 36 (3): 132- 140.
8 LUO Y S , ZHAO Y S , YANG S , et al. Effects of Ru on microstructure and stress rupture property of Ni-based single crystal superalloy DD22[J]. Journal of Aeronautical Materials, 2016, 36 (3): 132- 140.
9 王开国, 李嘉荣, 刘世忠, 等. DD6单晶高温合金980℃蠕变性能影响[J]. 材料工程, 2008, (8): 7- 11.
9 WANG K G , LI J R , LIU S Z , et al. Study on creep properties of single crystal superalloy DD6 at 980℃[J]. Journal of Materials Engineering, 2008, (8): 7- 11.
10 梁爽, 田素贵, 刘志鑫, 等. 含Mo单晶镍合金的高温蠕变及损伤行为[J]. 中国有色金属学报, 2017, 27 (5): 911- 919.
10 LIANG S , TIAN S G , LIU Z X , et al. Creep and damage behavior of containing Mo nickel-based single crystal superalloy at high temperature[J]. The Chinese Journal of Nonferrous Metals, 2017, 27 (5): 911- 919.
11 MAYA C , EGGELER G , WEBSTER G A , et al. Double shear creep testing of superalloy single crystal at temperatures beyond 1000℃[J]. Materials Science and Engineering:A, 1995, 199, 121- 130.
doi: 10.1016/0921-5093(94)09721-6
12 LIU J L , JIN T , SUN X F , et al. Anisotropy of stress rupture properties of Ni-base single crystal superalloy at two temperatures[J]. Materials Science and Engineering:A, 2008, 479, 277- 284.
doi: 10.1016/j.msea.2007.07.050
13 ERICSSION T . On the suzuki effect and spinodal decomposition[J]. Acta Materialia, 1966, 14 (9): 1073- 1084.
doi: 10.1016/0001-6160(66)90195-7
14 DINSDALE A T . SGTE data for pure elements[J]. Calphad, 1991, 15 (4): 317- 425.
doi: 10.1016/0364-5916(91)90030-N
15 CHOU K C , LI W C , LI F S , et al. Formalism of new ternary model expressed in terms of binary regular-solution type parameters[J]. Calphad, 1996, 20 (4): 395- 406.
doi: 10.1016/S0364-5916(97)00002-3
16 MIEDENA A R , CHATEL P F , BOER F R . Cohesion in alloy-fundamentals of a semi-empirical model[J]. Physica B+C, 1980, 100 (1): 1- 28.
17 于兴福, 田素贵, 王明罡, 等. Ni-Al-Re/Ru合金的层错能[J]. 材料研究学报, 2008, 22 (5): 515- 520.
doi: 10.3321/j.issn:1005-3093.2008.05.013
17 YU X F , TIAN S G , WANG M G , et al. The stacking fault energy of Ni-Al-Re/Ru alloy[J]. Chinese Journal of Materials Research, 2008, 22 (5): 515- 520.
doi: 10.3321/j.issn:1005-3093.2008.05.013
18 TIAN S G , ZHANG J H , XU Y B , et al. Features and effect factors of creep of single crystal nickel-based superalloys[J]. Metallurgical and Materials Transactions A, 2001, 32, 2947- 2957.
doi: 10.1007/s11661-001-0169-8
19 FOILES S M , DAW M S . Application of the embedded atom method to Ni3Al[J]. Journal of Materials Research, 1987, 2 (1): 5- 15.
doi: 10.1557/JMR.1987.0005
20 王玉昌, 兰鹏, 李杨, 等. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程, 2015, 43 (9): 30- 38.
20 WANG Y C , LAN P , LI Y , et al. Effect of alloying element on mechanical behavior of Fe-Mn-C TWIP steel[J]. Journal of Materials Engineering, 2015, 43 (9): 30- 38.
21 VITEK V . Atomic structure of dislocations in intermetallics with close packed structure:a comparative study[J]. Intermetallics, 1998, 6 (7/8): 579- 585.
22 KEAR B H , GIAMEI A F , SILCOCK J M , et al. Slip and climb processes in γ' precipitation hardened nickel-base alloys[J]. Scripta Materialia, 1968, 2 (5): 287- 293.
23 KNOWLES D M , CHEN Q Z . Superlattice stacking fault formation and twinning during creep in γ'/γ single crystal superalloy CMSX-4[J]. Materials Science and Engineering:A, 2003, 340, 88- 102.
doi: 10.1016/S0921-5093(02)00172-7
24 JÁCOMEA L A , NÖRTERSHÄUSERA P , HEYEAR J K , et al. High-temperature and low-stress creep anisotropy of single-crystal superalloys[J]. Acta Materialia, 2013, 61, 2926- 2943.
doi: 10.1016/j.actamat.2013.01.052
25 FOILES S M , DAW M S . Application of the embedded atom method to Ni3Al[J]. Journal of Materials Research, 1987, 2 (1): 5- 15.
doi: 10.1557/JMR.1987.0005
26 舒德龙, 田素贵, 吴静, 等. 一种含4.5%Re/3.0%Ru的单晶镍基合金的高温蠕变行为[J]. 材料工程, 2017, 45 (3): 41- 46.
26 SHU D L , TIAN S G , WU J , et al. Creep behavior of a containing Re/Ru single crystal nickel-based superalloy at elevated temperatures[J]. Journal of Materials Engineering, 2017, 45 (3): 41- 46.
27 JOHNSON W R , BARRET C R , NIX W D . The high-temperature creep behavior of nickel-rich Ni-W solid solutions[J]. Metallurgical and Materials Transactions A, 1972, 3 (4): 963- 969.
doi: 10.1007/BF02647673
28 MOKHER A K , BIRD J E , DORN J E . Experimental correlations for high-temperature creep[J]. Transaction Quarterly ASM, 1969, 62, 155- 179.
29 李嘉荣, 史振学, 袁海龙, 等. 单晶高温合金DD6拉伸性能各向异性[J]. 材料工程, 2008, (12): 6- 10.
doi: 10.3969/j.issn.1001-4381.2008.12.002
29 LI J R , SHI Z X , YUAN H L , et al. Tensile anisotropy of single crystal superalloy DD6[J]. Journal of Materials Engineering, 2008, (12): 6- 10.
doi: 10.3969/j.issn.1001-4381.2008.12.002
30 HEMKER K J , MILLS M J , NIX W D . An investigation of the mechanisms that control intermediate temperature creep of Ni3Al[J]. Acta Metallurgica et Materialia, 1991, 39 (8): 1901- 1913.
doi: 10.1016/0956-7151(91)90159-X
31 RONG T S , JONES I P , SMALLMAN R E . Dislocation mechanisms in creep of Ni3Al at intermediate temperature[J]. Acta Metallurgica et Materialia, 1995, 43 (4): 1385- 1393.
doi: 10.1016/0956-7151(94)00381-Q
[1] 曹凯莉, 杨文超, 屈鹏飞, 黄太文, 郭敏, 苏海军, 张军, 刘林. Ru对镍基单晶高温合金凝固特性、TCP相析出及蠕变性能影响的研究进展[J]. 材料工程, 2022, 50(1): 80-92.
[2] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[3] 李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
[4] 刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
[5] 崔璐, 石红梅, 张涛, 王澎, 李臻. 热交变载荷下10% Cr耐热钢蠕变疲劳裂纹萌生特征[J]. 材料工程, 2017, 45(9): 143-148.
[6] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[7] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[8] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[9] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
[10] 舒德龙, 田素贵, 吴静, 张宝帅, 梁爽. 一种含4.5%Re/3.0%Ru的单晶镍基合金的高温蠕变行为[J]. 材料工程, 2017, 45(3): 41-46.
[11] 王天佑, 王小蒙, 赵子华, 张峥. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程, 2017, 45(2): 88-95.
[12] 舒德龙, 田素贵, 梁爽, 张宝帅. 一种4.5% Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45(1): 93-100.
[13] 陈斌, 孙威, 赵颉, 胡常青. 亚稳β型钛合金中的{332}<113>变形孪晶[J]. 材料工程, 2017, 45(1): 111-119.
[14] 李振荣, 马春蕾, 蒋成勇, 田素贵, 陈礼清, 刘相华. 热连轧GH4169合金的点阵常数与蠕变性能[J]. 材料工程, 2016, 44(3): 97-102.
[15] 王建亭, 周荣生, 王明杰, 朱定一. 形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响[J]. 材料工程, 2016, 44(1): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn